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Abstract

Braided rivers switch between quiet and active periods of bedload transport while their
planform changes quickly. This makes both simple descriptive indices and heavy mor-
phodynamic models hard to use in practice. This thesis offers a practical middle path: it
treats channel change as a sequence of morphological states read from planform images
and models how the river switches between them with a continuous-time Markov model.
The aim is to turn images into probabilistic forecasts of sediment transport with stated
uncertainty.

From flume imagery, binary water masks are compared with two complementary measures
that capture edge movement and area overlap. We reduce these pairwise differences and
cluster the images to obtain a small, readable set of recurring states, ranging from narrow
and simple to wide and partitioned. The time the river stays in a given state is well
described by an exponential law, which allows us to estimate transition rates and jump
probabilities for the Markov model.

The resulting ensemble recovers means, variances, extremes, and main time scales, and
it shows clear morphological control of transport, including a negative link with wetted
width and with a braiding index. Splitting the variance indicates that differences between
states explain a meaningful part of the instant variability, while the rest arises within states.
The learned states and transitions remain stable across independent runs.

For image-only cases, two variants extend the method: one that preserves the long-
term mean, and another that uses stream power from images to scale state-wise means.
Weighting by how long the river stays in each state keeps the overall mean accurate
when direct bedload data are missing. Overall, the framework provides a clear path from
images to forecasts, explains intermittency as switching among states with different export
capacity, and enables practical predictions with quantified uncertainty.

Key words: braided rivers; sediment transport; morphodynamics; continuous-time
Markov chains; planform imagery.
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Résumé

Les rivieres tressées alternent entre des périodes calmes et actives de transport de fond,
tandis que leur forme en plan change rapidement. Cela rend peu pratiques a la fois
les indices simples et les modéles morphodynamiques lourds. Cette thése propose une
voie intermédiaire pratique : elle décrit I'évolution du chenal comme une suite d’états
morphologiques lus dans des images en plan, et modélise les passages entre ces états
avec un modele de Markov en temps continu. L’objectif est de transformer des images en
prévisions probabilistes du transport de sédiments, avec une incertitude explicitée.

A partir d’images de canal, des masques d’eau binaires sont comparés avec deux mesures
complémentaires qui saisissent le déplacement des bords et le recouvrement des surfaces.
Les différences par paires sont réduites en dimension puis regroupées pour obtenir un
petit ensemble d’états récurrents, lisibles, allant de configurations étroites et simples a
larges et partitionnées. Le temps passé dans chaque état suit bien une loi exponentielle,
ce qui permet d’estimer les taux de transition et les probabilités de saut du modele de
Markov.

Sur cette base, des simulations aléatoires simples avec un bootstrap selon 1’état générent
des séries synthétiques de transport. Une étape de filtrage retient seulement les séries
qui reproduisent la distribution observée et les rythmes temporels. L'ensemble obtenu
retrouve les moyennes, variances, extrémes et principales échelles de temps, et il met en
évidence un contréle morphologique net du transport, y compris un lien négatif avec la
largeur mouillée et avec un indice de tressage. Une décomposition de la variance montre
qu’une part notable de la variabilité instantanée vient des différences entre états, le reste
provenant de la variabilité a I'intérieur des états. Les états appris et les transitions restent
stables sur des séries indépendantes.

Pour les cas avec seulement des images, deux variantes étendent la méthode : 1'une qui
préserve la moyenne a long terme, et une autre qui utilise la puissance du courant déduite
des images pour mettre a 1’échelle les moyennes par état. Un pondérage par le temps de
séjour dans chaque état maintient une moyenne globale fidele quand on ne dispose pas de
mesures directes du charriage. Au final, le cadre propose une voie claire des images vers
la prévision, explique l'intermittence comme des passages entre états a capacité d’export
différente, et permet des prédictions pratiques avec incertitude quantifiée.

Mots clefs : rivieres en tresses; transport de fond ; morphodynamique; chaines de Markov
en temps continu; images en plan.






Resumen

Los rios trenzados alternan periodos tranquilos y activos de transporte de fondo mientras
su forma en planta cambia con rapidez. Esto hace poco practicos tanto los indices simples
como los modelos morfodindmicos pesados. Esta tesis propone una via intermedia: trata
el cambio del canal como una secuencia de estados morfolégicos leidos en imagenes
en planta y modela los pasos entre esos estados con un modelo de Markov en tiempo
continuo. El objetivo es convertir imagenes en prondsticos probabilisticos del transporte
de sedimentos, con la incertidumbre claramente indicada.

A partir de un conjunto de imagenes de un canal experimental, se construyen mdscaras
binarias de agua y se comparan con dos medidas complementarias que capturan el
movimiento de los bordes y el solape de las dreas. Las diferencias por pares se reducen
en dimension y luego se agrupan para obtener un conjunto pequefio y legible de estados
recurrentes, que van desde patrones estrechos y simples hasta anchos y particionados. El
tiempo que el sistema permanece en cada estado se describe bien con una ley exponencial,
lo que permite estimar tasas de transicién y probabilidades de salto para el modelo de
Markov.

Sobre esta base, simulaciones aleatorias sencillas con un bootstrap por estado generan
series sintéticas de transporte. Un paso de filtrado conserva solo las series que reproducen
la distribucién observada y los ritmos temporales. El conjunto resultante recupera medias,
varianzas, extremos y las principales escalas de tiempo, y muestra un control morfolégico
claro del transporte, incluido una correlacién negativa con el ancho mojado y con un indice
de trenzado. Una descomposicién de la varianza indica que las diferencias entre estados
explican una parte apreciable de la variabilidad instantanea, mientras que el resto surge
dentro de los estados. Los estados aprendidos y las transiciones se mantienen estables en
corridas independientes.

Para casos en los que solo hay imagenes, dos variantes amplian el método: una que
preserva la media de largo plazo y otra que usa la potencia de la corriente estimada a
partir de imagenes para escalar las medias por estado. Un ponderado por el tiempo de
residencia en cada estado mantiene la media global cuando no hay datos directos de
transporte. En conjunto, el marco ofrece un camino claro desde las imadgenes hasta la
prevision, explica la intermitencia como cambios entre estados con distinta capacidad de
exporte y permite predicciones practicas con incertidumbre cuantificada.

Palabras clave: rios trenzados; transporte de fondo; morfodinamica; cadenas de Markov
en tiempo continuo; imagenes en planta.
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1 | Introduction

Rivers are not merely conduits of water. They supply drinking water, energy and navi-
gation; recycle nutrients; recharge groundwater; dilute pollutants; and sustain mosaics
of riparian habitats with high biodiversity. For much of the twentieth century, hydraulic
engineering prioritised flood control and hydropower, often overlooking these broader
ecological and geomorphic functions. However, contemporary restoration and rehabilita-
tion seek a more holistic balance among safety, economic needs and ecosystem integrity,
motivating interventions such as removal of bank protection, side-channel reactivation
and mitigation of hydropeaking effects (Bertoldi et al., 2009b). Delivering such mea-
sures cost-effectively demands a robust understanding of river dynamics across chemical,
biological, ecological, hydrological and morphodynamic dimensions.

Despite sustained progress, core morphodynamic questions remain unresolved. Nowhere
is this more evident than in the strongly mobile reaches where bedload dominates and
channel change is rapid. There, sediment pulses, braid-plain mobility and the attainment
(or absence) of transport equilibrium are difficult to measure and harder to predict, even
under steady forcing (Ancey, 2020a, 2020b). This chapter frames that challenge and
establishes the conceptual ground needed to discuss why braiding matters, what is known
about its controls, and why prediction remains difficult.



Chapter 1 Introduction

1.1 Whatis a braided river?

A braided river, like the Navisence in Figure 1.1, is a multi-thread channel network in
which individual threads repeatedly bifurcate and rejoin around unvegetated bars (Jagers,
2003). Although there is no singular definition, several concise descriptions are commonly
accepted:

* “A system of channels, splitting and rejoining around islands” (Jagers, 2003);

* “An unstable network of multiple channels separated by ephemeral bars” (P. Ash-
more, 2024);

* “A network of bars and interweaving channel threads” (Y. Wang et al., 2024);

¢ “Multiple channel threads separated by mobile, inter-channel bars” (Li & Limaye,
2025).

Figure 1.1: UAV photo of the upper reach of the Navisence River above Zinal, Canton of
Valais, Switzerland. Credit: Bob de Graffenried, EPFL/LHE.

Braided rivers occur across a wide range of climates and scales. They are especially
frequent in proglacial corridors, arid and semi-arid basins, and mountain piedmonts
where coarse sediment supply is high and riparian vegetation is scarce (P. Ashmore,
2013). Typically set in unconfined valleys, these systems combine (i) large fluxes of
unconsolidated sediment, (ii) stream power sufficient to mobilize that load, and (iii) banks
prone to erosion (Wohl, 2020). The channels reorganize rapidly, with lateral migration and
bar turnover occurring on short time scales (E. W. Lane, 1955).
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Although no single criterion uniquely identifies a braided planform, the literature con-
verges on several recurring ingredients:

¢ High stream power. Steep valley gradients (roughly 1-10%) favor braiding, but unit
stream power (discharge times slope) is a more robust discriminator: for a given
grain size, braided rivers tend to exhibit larger values than meandering counterparts
(P. Ashmore, 2013; Knighton, 2014).

¢ Abundant bedload supply. When sediment input exceeds transport capacity, de-
position initiates mid-channel bars that deflect flow and promote new bifurcations
(Leopold & Wolman, 1957; Williams et al., 2015).

¢ Erodible, non-cohesive banks. Easily eroded banks enable channel widening and
bar proliferation; cohesive substrates or dense vegetation promote single-thread or
anastomosing patterns (Eaton et al., 2010).

¢ Rapid discharge fluctuations. Large floods or strong melt-season hydrographs
enhance bank erosion, reset bedforms, and clear stabilizing vegetation, maintaining
braiding activity (Burkham, 1972; L. Wang et al., 2019).

In essence, an active braided river is a wide, shallow corridor of non-cohesive sediment
with limited in-channel vegetation, driven by high rates of potential-energy dissipation.
Several measurable attributes help characterize planform and short-term dynamics in
practice: the braid index (number of active threads), junction density, bar size and turnover,
and lateral-migration rates (Egozi & Ashmore, 2009; Limaye, 2020). These indicators vary
with discharge regime and with how channels and bars are delineated from imagery or
topography (Stecca et al., 2019). The continual creation, erosion, and re-entrainment of
bars produce large, rapid swings in bedload transport and planform, consistent with
documented nonlinear responses in geomorphic systems (Phillips, 2006).

Braiding also sits on a broader continuum of channel patterns governed by sediment
caliber, supply, and slope. Figure 1.2, adapted from Church (2006), places braiding within
this spectrum, between wandering and anastomosed patterns, emphasizing that modest
shifts in external drivers can move a river among planform states without qualitative
changes in material properties.

1.2 Why morphology forecasting matters

Braided rivers reshape valleys quickly, rerouting flow and redistributing sediment in
ways that affect safety, infrastructure, navigation, and habitat. Changes in planform
alter flood conveyance and bank stability, influence bridge and pipeline exposure, and
restructure the mosaic of bars, side channels, and shallow ponds that support riparian and
aquatic biodiversity (Bristow & Best, 1993; Church & Ferguson, 2015; Foufoula-Georgiou
& Sapozhnikov, 2001; Jagers, 2003; Surian, 2015). Because these systems can reorganize on
event to seasonal time scales, decisions about corridor protection, asset siting, and habitat
maintenance benefit from anticipating where channels will split, migrate, and reconnect.
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Figure 1.2: Morphological continuum of alluvial channels as a function of sediment caliber,
supply, and gradient (Church, 2006). Braided rivers occupy the high-supply, coarse-
sediment, high-slope domain, bracketed by wandering and anastomosed patterns.
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From a management and restoration standpoint, forecasting morphology ties directly to
the transition from form-based interventions toward process-based restoration: projects are
more effective when they restore regimes of flow, sediment, and wood and provide rivers
with room to adjust, rather than imposing fixed forms (Beechie et al., 2010; Kondolf, 2006;
Poff etal., 1997; Polvi et al., 2020; Wohl, 2020; Wohl et al., 2016). Large restoration programs
and policies (e.g., Switzerland’s framework for allocating space to rivers and planning
rehabilitation) seek to re-establish connectivity and sediment continuity, yet outcomes
depend on how morphodynamics and sediment supply interact locally (Bernhardt et al.,
2005; Biron et al., 2014; Kurth & Schirmer, 2014; Woolsey et al., 2007). A probabilistic,
state—transition description grounded in observable morphology delivers the type of
information practitioners need, this is ranges rather than single values, dwell times, and
lead times, so they can identify where dynamic widenings are likely to activate, how long
states persist, and how transport intermittency may reorganize habitats and risks, thereby
informing process-based design, monitoring, and adaptive management (Beechie et al.,
2010; Polvi et al., 2020; Wohl, 2020).

Over the past century, many braided river corridors have simplified under human pres-
sures such as channel incision, narrowing, embankment construction, and vegetation
encroachment, reducing braiding intensity and altering ecosystem services (Bertoldi et
al., 2014; Habersack et al., 2008; Stecca et al., 2019; Surian, 2015). Activities like gravel
extraction, flow regulation, and channelization disrupt sediment budgets and disturbance
regimes, thereby reducing the likelihood of bar formation and limiting thread mobility
(Bertoldi et al., 2014; Redolfi, 2015). Forward-looking assessments can clarify whether
common restoration actions, such as sediment augmentation, removal of bank protections,
or side-channel reactivation, are likely to shift a reach toward desired geomorphic and
ecological conditions, while also balancing cost and risk (Church & Ferguson, 2015; Ettema
& Armstrong, 2019; Redollfi et al., 2020).

Forecasting is also motivated by measurement limits and process variability. Direct
bedload monitoring rarely scales across a braidplain, and reported transport signals
show strong intermittency, pulses, and threshold effects that complicate extrapolation
(Ancey, 2020a; Antoniazza et al., 2019; Bertoldi et al., 2009a; Egozi & Ashmore, 2009).
Morphodynamic adjustments depend on antecedent topography and junction dynamics,
so exact trajectories are hard to predict; credible forecasts therefore represent uncertainty
explicitly and emphasize likely ranges of change rather than single paths (S. N. Lane, 2006;
Phillips, 2006; Singh et al., 2009; Stecca & Hicks, 2022; Warburton & Davies, 1994). In
practice, morphology serves as both signal and proxy: repeat digital elevation models,
orthophotos, and satellite imagery locate erosion and deposition, support inverse estimates
of fluxes, and reveal patterns of lateral migration and bar turnover relevant for reach-scale
planning (Redolfi et al., 2020; Sambrook Smith et al., 2006; Vericat et al., 2017).

Taken together, these considerations make morphology forecasting a practical requirement
for managing braided rivers. It links observed planform dynamics to risks, costs, and
ecological outcomes, and it provides a transparent basis for comparing scenarios under
present constraints of regulation, sediment harvesting, and changing hydrologic regimes.
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1.3 Complexity and variability

Braided rivers are strongly nonlinear, multiscale systems. Even under steady forcing they
display intermittent pulses, sensitive dependence on initial conditions, and dynamics
that produce divergent configurations from nearly identical starts, something that makes
us think of deterministic chaos (Phillips, 2006; Sivakumar, 2004; Stecca & Hicks, 2022).
Coherent structures (i.e., bars, chute cutoffs, confluences—bifurcations) interact across
scales in ways that resemble turbulence cascades, yielding emergent organization within
patterns that appear chaotic (Doeschl et al., 2006; Jagers, 2003; Stecca & Hicks, 2022).

Variability is not an artifact of external disturbances alone. Laboratory and field studies
document autogenic fluctuations in bedload and planform at constant discharge, including
phases of rapid change alternating with quiescent periods (P. Ashmore, 2024; Jagers, 2003;
Warburton & Davies, 1994). Time series of transport and morphology show long-tailed
distributions, bursts of transport, and weak short-term predictability, while stationarity, if
there is any, often emerges only in an averaged, statistical sense (Ancey, 2020a; Stecca &
Hicks, 2022; Vesipa et al., 2018). Scale invariance and dynamic scaling further testify that
braiding entails a hierarchy of lengths and times, with partial self-similarity in planform
and topography (Doeschl et al., 2006; Foufoula-Georgiou & Sapozhnikov, 2001; Surian,
2015).

In steep, bedload-dominated settings, variability tends to be particularly high and equilib-
rium notions become subtle. Lateral instability is persistent, thresholds are episodically
exceeded, and averages converge slowly (Ancey, 2020a; Church & Ferguson, 2015; Singh
et al., 2009). These properties difficult point forecasting since attempting single best-
trajectory predictions is quickly undermined by nonlinear amplification and intermittency.
More informative forecasts, on the other hand, target distributions of state change rather
than exact paths (S. N. Lane, 2006; Stecca & Hicks, 2022).

Because these dynamics show themselves on bars, nodes, and channel threads, the plan-
form provides a clear, scalable record of the underlying processes. Then, morphology as
the primary lens offers both practicality and signal for inference at reach to basin scales
(Doeschl et al., 2006; Sambrook Smith et al., 2006; Vericat et al., 2017).
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1.4 Morphology as a long-standing and practical lens

For more than half a century, braided rivers have been summarized through planform
morphology. Classic metrics (e.g., the braiding index (BI), channel-count measures, bar
wavelength, and confluence-bifurcation spacing) capture style and degree of braiding and
remain widely used in lab and field studies (Chalov & Alexeevsky, 2013; Doeschl et al.,
2006; Egozi & Ashmore, 2008; Surian, 2015). Work on “active” versus “total” braiding
intensity showed that braiding responds systematically to discharge and stream power,
emphasizing the need to separate threads that convey flow from those that are inactive
at a given stage (Egozi & Ashmore, 2009). At the same time, critiques have noted that BI
based solely on low-flow channel counts can be sensitive to stage and delineation rules,
urging care in how channels and bars are mapped from images or topography (Stecca
et al., 2019). Building on these insights, recent contributions have introduced the effective
braiding index (eBI), an entropy-informed modification of BI that discounts uneven thread
activity and improves robustness; the BI/eBI ratio provides a compact descriptor of thread
heterogeneity (Tejedor et al., 2022). Together, BI, eBI, and related intensity measures offer
a practical language for comparing reaches, tracking adjustments, and relating structure
to transport behavior.

Although the literature has often summarized the behavior of braided rivers through a
general characterization based on one or a few planform indices, such as the previously
mentioned and characteristic lengths (Chalov & Alexeevsky, 2013; Doeschl et al., 2006;
Eaton et al., 2010; Egozi & Ashmore, 2008, 2009; Surian, 2015), this work adopts a different
perspective: we propose a multidimensional characterization that describes the system
as a collection of observable morphological states and their transition probabilities.
This shift in emphasis makes it possible to explicitly capture the diversity, persistence, and
alternation of configurations, rather than compressing the entire behavior into a single
number or set of parameters.

Morphology also supports a more "physical” line of inference: the morphological method
for estimating sediment fluxes by mass balance of erosion and deposition between surveys.
This inverse approach, rooted in the Exner equation, accumulates volumetric changes
over mapped areas and divides by the elapsed time to obtain reach-scale bed-material
transport rates (Antoniazza et al., 2019; Vericat et al., 2017). When repeat digital elevation
models (DEMs) are available, difference maps (DoDs) localize scour and fill, enabling
spatially distributed estimates and event-to-seasonal budgets (Vericat et al., 2017). Recent
applications extend this idea to two-dimensional mapping of fluxes across braidplains,
leveraging survey intervals aligned with hydrologic events (Antoniazza et al., 2019).
The approach complements point measurements by capturing intermittent pulses and
pathway shifts that are otherwise hard to sample, while requiring careful treatment of
vertical error, thresholding, and survey frequency (Antoniazza et al., 2019; Vericat et al.,
2017).

The rise of consistent plan-view data has reinforced both strands. Aerial photography,
fixed cameras, UAVs, and satellites provide repeatable coverage across large extents and
long durations, turning morphology into an accessible measurement target (Jagers, 2003;
Sambrook Smith et al., 2006; Tejedor et al., 2015b; Vericat et al., 2017). In practice, planform
mapping now supports (i) index-based summaries (BI, eBI, intensity) to assess braiding de-

7



Chapter 1 Introduction

gree and its variability, and (ii) change-detection workflows to quantify erosion—deposition
budgets and infer reach-scale fluxes at manageable cost (Antoniazza et al., 2019; Egozi &
Ashmore, 2009; Tejedor et al., 2022; Vericat et al., 2017).

Treating morphology as a time-ordered signal is a good way of integrating these pieces.
Sequences of maps can be transformed into time series of thread centerlines, nodes, and
bar fields; and summarized by distributions of active width, events of rapid morphological
change, and migration rates (Doeschl et al., 2006; Li & Limaye, 2025). New methods like
network abstractions and information-based descriptors further quantify connectivity,
redundancy, and pathway diversity in ways that connect structure to function (Booker
& Eaton, 2021; Heckmann et al., 2015; Tejedor et al., 2015b). In laboratory experiments
and natural rivers alike, such signals reveal dynamic scaling and near-stationary statistics
at aggregate levels, even as individual configurations remain highly variable (Doeschl
et al., 2006; Foufoula-Georgiou & Sapozhnikov, 2001; Surian, 2015). This combination of
index-based characterization, mass-balance budgeting, and time-series analysis of mapped
morphology, makes planform a practical lens for understanding braided rivers at the
scales where decisions are made.

1.5 An informational viewpoint on morphology

When we see planform evolution as time series of signals, questions about how much of
the near future is already encoded in today’s map arise. Information theory (Shannon,
1948) offers a concise language for that purpose where entropy measures diversity of
channel occupation; mutual information estimate shared structure between parts of a
network or successive times; and conditional entropy expresses the remaining freedom
for reconfiguration (Tejedor et al., 2015a). In channel networks, these ideas connect
naturally to loops, alternative paths, and shared flux, which can be related to redundancy
and vulnerability under perturbations (Tejedor et al., 2015a, 2015b). Building on this
foundation, the entropic braiding index (eBI) implements a Shannon-entropy measure to
summarize cross-sectional channel diversity from images, providing a resolution-robust
complement to classical braiding counts (Tejedor et al., 2022).

Information theory provides a way to think about predictability. Low conditional
entropy and high mutual information mean that the current channel shape constrains
what comes next, while high entropy indicates more freedom for change (Tejedor et
al., 2015a, 2022). Observations support this: long planform records show that channel
threads move coherently over years to decades, even though the system looks disordered
on the surface. This suggests that channel geometry does contain usable information
about future migration (Li & Limaye, 2025). At the same time, braided corridors show
evidence of dynamic scaling and self-organization. Both laboratory and field studies
reveal scale-invariant patterns and evolution toward near-critical states—hallmarks of
systems where forecasts are better expressed in probabilistic rather than deterministic
terms (Foufoula-Georgiou & Sapozhnikov, 2001; Sapozhnikov & Foufoula-Georgiou, 1997,
1999).
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Recent work strengthens this informational view across scales. Using Taylor’s power
law and fixed-mass multifractal analysis, Rizzello et al. (2024) showed that core plan-
form variables such as the number of wet channels, their mean width, and eBI display
multiscaling and multifractality across aggregation lengths in a large braided reach. In
practice, this means that entropy-based summaries and variance-mean relations change
systematically with observation scale, yet remain computable from repeat imagery. This
behavior supports the use of scale-aware informational metrics as both inputs and targets
for forecasting.

Another application of information theory is a complementary line of work that uses
spectral graph theory to formalize connectivity in multi-thread networks. Network repre-
sentations yield metrics such as the number of alternative paths, resistance distance, link
or flux sharing, and leakage, each reflecting how topology partitions and redistributes flux.
Although developed largely for deltas, these tools have been extended to multidirectional
estuarine systems, where analyses show how loops, redundancy, and tidal asymmetry
influence steady-state flux allocation (Tejedor et al., 2015a, 2015b). These results demon-
strate that network structure and directionality jointly govern information sharing across
subnetworks. The same insight can be applied to braided corridors when networks are
consistently extracted from imagery or topography. Hiatt et al. (2020) provide an oper-
ational roadmap for extracting networks, weighting links by geometry, and computing
direction-aware connectivity metrics from remotely sensed data.

In sum, an informational viewpoint turns images into computable, scale-explicit sum-
maries such as entropy, mutual information, and connectivity metrics. These descriptors (i)
are grounded in observations available at corridor scales, (ii) capture how much structure
today’s planform already constrains, and (iii) highlight the limits of predictability that
arise from scale-dependent variability, multiple possible routing options, and internally
generated fluctuations. Together, these properties position information theory as a natural
building block for probabilistic assessments of planform reconfigurations.

1.6 Braided rivers as a state-transition process

Building on the informational perspective outlined above, the central idea here is that
the present planform constrains what can happen next, and that these constraints are
statistical and scale dependent rather than deterministic. In practice, the descriptors used
to summarize braiding, such as channel counts, active width, junction density, and related
planform measures, vary through time even when external conditions remain steady (T.
Hoey, 1992; T. B. Hoey & Sutherland, 1991; Redolfi et al., 2017; Warburton & Davies, 1994).
Laboratory and field studies show that autogenic bar growth, decay, and reoccupation can
sustain oscillations in planform metrics under constant or quasi-constant forcing. As a
result, index time series move within ranges set by sediment caliber, supply, and slope
rather than around a single value (Jagers, 2003; Redolfi et al., 2018; Stecca et al., 2019).
This variability is not mere noise. Long records reveal alternation among a limited set
of values or morphologies (Doeschl et al., 2006; Limaye, 2020). Recent work in bedload
transport reinforces this probabilistic view, emphasizing that fluctuations are intrinsic and
that improved prediction requires representing noise and pattern together (Li & Limaye,
2025).
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Such behavior is consistent with the broader picture of nonlinear river dynamics. Geomor-
phic systems are nonlinear and can display signatures of chaos without being everywhere
or always chaotic (Phillips, 2006; Sivakumar, 2004). In braided corridors, experiments and
remote sensing have documented dynamic scaling and near-critical behavior, characteristic
of systems that self-organize toward statistical equilibria with stable aggregate descriptors
and scale-invariant fluctuations (Foufoula-Georgiou & Sapozhnikov, 2001; Rizzello et al.,
2024; Sapozhnikov & Foufoula-Georgiou, 1999). From this point of view, it is natural
to see evolution as alternation among a finite catalogue of recurrent, observable mor-
phological configurations, or states. This framing reduces continuous, high-dimensional
variability to a tractable set of recognizable patterns, while transitions among them capture
the alternation seen in planform indices and provide a basis for probabilistic prediction.

These mentioned points motivate dividing planform imagery into discrete morphological
states. The construction is empirical and data driven. States could be defined by thresholds
or clustering in active width and channel counts, by bar stages and junction patterns,
or by topology extracted from images or DEMs that represent threads and bifurcations
as graphs with quantified connectivity and directionality (Hiatt et al., 2020; Tejedor et
al., 2015a, 2015b, 2022). We believe morphology is a practical vehicle for this since it
is directly observable at corridor scales with repeatability. UAV surveys, orthophotos,
satellite composites, and repeat DEMs yield consistent time series over reaches and years
(Sambrook Smith et al., 2006; Vericat et al., 2017). Moreover, morphology coevolves with
flow and sediment pathways, so its patterns carry information about near-future reconfig-
urations, as suggested by coherent thread migration and curvature-linked adjustments
documented over multiyear windows (Li & Limaye, 2025; Limaye, 2020; Rajbanshi et al.,
2022). While concepts from information theory motivate the idea that the present pattern
reduces uncertainty about the next, our implementation relies directly on morphology
itself (i.e., on the geometry and arrangement of wetted threads) rather than on any single
informational metric (i.e., indices like BI and eBI).

The idea of treating patterns as the modeling currency is not new, as it has been used
recently in different areas. In deltaic and braided settings, multiple-point geostatistics
(MPS) uses training images to encode higher-order spatial structure and to sample new,
statistically consistent patterns. These ideas show how a few configurations can reproduce
most observed variability, aligning naturally with a discrete-state view and enabling
distance-based comparisons between realizations and observations (Scheidt et al., 2016a).
Related developments by Mariéthoz, Renard, and collaborators demonstrate that realistic
channel organization can emerge from stochastic recombination of patterns learned from
images using algorithms such as SNESIM and Direct Sampling, with realizations drawn by
Metropolis—-Hastings or genetic search to honor multipoint constraints and conditioning
data (Mariethoz & Caers, 2014; Mariethoz et al., 2010; Strebelle, 2006).

Combining time evolution with the previous methods can also be done by calibrating
against image sequences. Hoffimann et al. (2019) proposed a Bayesian framework that (i)
defines summary morphodynamic statistics, (ii) generates large ensembles of synthetic
sequences by combining a Markov transition structure with randomized dwell times
and within-state resampling of images, and (iii) accepts only those sequences whose
statistics match the data. This method quantifies uncertainty in mode occupancies and
switching and operationalizes the link between a small catalog of morphological modes
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and stochastic alternation among them. The work from Hoffimann was a big inspiration
for our work.

We believe a Markov state-transition model is a natural way to operationalize these
insights. The construction is straightforward: select a state space from observable plan-
form attributes (here, planform water distribution), choose a diagnostic time step suited
to the data, and estimate the transition matrix P = {p;;} by counting how often one state
follows another in time-ordered imagery. This yields multi-step forecasts p;., = p:P¥,
dwell-time and return-time diagnostics, and a stationary occupancy vector 7 satisfying
7P = m (Arkov et al., 1999; S. N. Lane, 2006). Our assumption is pragmatic rather than
physical. Our goal is not to argue that river physics is memoryless, but to pick a resolution
and a state definition at which unresolved mechanisms appear approximately Markovian;
even if persistence or latent drivers matter, we could use higher-order or hidden-state
variants to keep the state-transition logic (Arkov et al., 1999). Precedent exists in flu-
vial contexts, where alongstream variability in the number of active channels has been
modeled as a Markov chain over cross-sectional states, reproducing salient statistics of
braiding (Jagers, 2003); analogous random-walk and Markov formulations on channel
networks connect topology to stationary flux allocation and vulnerability via Laplacian
eigenstructure (Tejedor et al., 2015a, 2015b). In general terms, it has been proved that
coarse-grained Markov descriptions are effective in those cases where regime occupancy
and switching frequencies are statistically stable even when detailed paths are not (S. N.
Lane, 2006; Phillips, 2006; Sivakumar, 2004).

This approach, even if not strict in conceptual terms, offers practical advantages. First, it
separates what can change (the states) from how often these changes occur (the entries
of P), making return times, absorption probabilities, and k-step likelihoods interpretable
in morphological terms and potentially scalable from reaches to networks. Second, it is
data efficient, since states come from imagery and transitions are simply counted, so new
acquisitions update P and refine uncertainty without retuning complex physics-based
models (Doeschl et al., 2006; Tejedor et al., 2015a). Third, it can accept nonstationarity
since seasonal hydrology or sediment-supply shifts can be represented by allowing P to
vary through time or by conditioning transitions on external covariates while keeping the
same core structure (Stecca & Hicks, 2022).

The pertinence of a Markov state-transition model is reinforced by the coupling between
morphology and sediment transport. Active width, junction asymmetry, and bar activity
co-vary with discharge and stream power, and bedload signals display intermittency
and pulses that mirror configuration changes rather than smooth trends (Ancey, 2020a;
Bertoldi et al., 2009a; Egozi & Ashmore, 2009; Recking et al., 2024). At reach scale,
the morphological method converts mapped erosion—deposition into flux estimates by
mass balance between surveys, localizing scour and fill, and revealing when and where
pulses originate (Habersack et al., 2008; Vericat et al., 2017). By characterizing each
morphological state with transport summaries (means, variances, tail behavior) and
using the Markov chain for occupancies, dwell times, and switching frequencies, we
obtain a forecast mixture for transport. Morphology thus becomes a practical bridge
from images to probabilistic predictions of transport magnitude and variability, consistent
with evidence across laboratory and field studies and aligned with modern monitoring
workflows (Ettema & Armstrong, 2019; Sambrook Smith et al., 2006).
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1.7 The challenge of forecasting bedload

The state-transition perspective makes clear that sediment flux depends not only on
hydraulics but also on which morphological configuration is active and how long that
configuration persists. This distinction is important because pointwise bedload predic-
tion remains highly uncertain even in controlled experiments and after decades of study.
Coarse-bed transport is inherently intermittent, nonlinear, and influenced by multiple
scales (Ancey, 2020a). Measurement is also challenging because high flows restrict direct
sampling, surrogate sensors require site-specific calibration, and rating-curve extrapola-
tions smooth out real variability. Reach-scale estimates therefore often show substantial
and unavoidable scatter (Habersack et al., 2008; Recking et al., 2024; Vericat et al., 2017).
Grain-scale processes such as hiding—exposure and incipient motion, together with bed-
surface changes such as armoring or partial transport, alter entrainment thresholds. These
dynamics generate long periods of low transport that are interrupted by sudden bursts
(Ancey, 2020a; Marti & Bezzola, 2006; Meunier et al., 2006). Field and laboratory records
both confirm that even under steady forcing, bedload can vary from near zero to several
times the mean with only weak persistence over time. This pattern underscores the funda-
mental limits of predicting transport on a path-by-path basis (Ancey, 2020a; Warburton &
Davies, 1994).

Our long flume experiment (~ 1200 h) reinforces these observations. The instantaneous
series in Figure 1.3 is highly intermittent, showing spikes well above the mean and long
quiet periods. This agrees with previous reports that pulses and lulls alternate even
when discharge remains nearly constant (Dhont & Ancey, 2018). The normalized running
mean in Figure 1.4 approaches the long-term average only slowly and later drifts away,
which supports analyses suggesting that very long windows of several hundred hours are
required to estimate the mean within a modest error, while short records can deviate by
orders of magnitude (Ancey, 2020a). The cumulative mass curve in Figure 1.5 departs from
the linear trend for extended intervals, which reveals regime-like contributions where long
periods of above-average accumulation alternate with quieter phases. Similar patterns
have been associated with episodic bar migration and pool aggradation—degradation,
although a considerable share of the transported volume can occur without clear bar
translation. This indicates that several mechanisms may produce the same flux signature
(Dhont & Ancey, 2018). Taken together, these results show that experiments lasting only
~100-200 h risk misrepresenting what counts as “typical” transport conditions in braided
or bar-forming channels (Ancey, 2020a; Doeschl et al., 2006).

These dynamics have practical consequences. First, replacing a fluctuating signal with a
single mean is not innocuous because transport-shear relations are convex, so averaging
inputs underestimates volumes (Jensen’s inequality). Taking natural variability into
account usually increases predicted yields by ~10-30% compared with deterministic runs
that use mean inputs (Recking et al., 2024). Second, fluctuations depend on configuration
because the same reach alternates among states with different hydraulics, thresholds, and
connectivity. A single “bedload rate” is therefore less informative than a distribution of
likely fluxes conditioned on the active configuration and its dwell time (Ancey, 2020a;
Jagers, 2003; Recking et al., 2024). Third, the instruments and workflows that scale
most effectively such as UAV imagery, orthophotos, satellite composites, and repeat
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topography, deliver morphology reliably, while direct flux measurements remain scarce
and uncertain. Morphology is therefore both a signal and a proxy for transport at corridor
scales (Sambrook Smith et al., 2006; Vericat et al., 2017).
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Figure 1.3: Time series of sediment transport rate measured in the experimental flume.
The shaded area represents the instantaneous bedload transport [g/s] over time. The
red dashed line indicates the mean transport rate ¢ = 0.156 g/s, while the upper and
lower blue dotted lines represent one standard deviation above and below the mean
(u+ 10 =0.283¢g/sand p — 1o = 0.029 g/s, respectively).
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Figure 1.4: Cumulative mean of sediment transport rate Q,(7') over time normalized by
the long-term mean transport rate, Qs(7T"). The blue curve shows how the cumulative
mean initially converges toward the mean value (Q; = 1.0, dashed gray line), with a
transient phase stabilizing near 0.9-1.0, followed by a gradual deviation at later times.
This behavior reflects the interplay between local fluctuations and long-term sediment
transport dynamics in the flume.
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Figure 1.5: Cumulative sum of sediment mass over time. The black curve (Q$*") shows
the progressive accumulation of sediment transport during the experiment. The red line
(Qgyy) connects the first and last points, representing the net linear trend between initial
and final states.

A state-based approach closes this gap. If images and DEM differencing identify the con-
figuration that the corridor occupies, then Markovian state-transition models can forecast
occupancies and switching frequencies; relating each state to transport summaries (me-
dian, spread, exceedance probabilities) turns morphology into probabilistic flux forecasts
rather than single-value predictions (Arkov et al., 1999; S. N. Lane, 2006). This perspective
aligns with recent recommendations to represent natural variability explicitly and to report
volumes with confidence intervals instead of point estimates (Recking et al., 2024). It also
integrates with modern monitoring like surrogate sensors (hydrophones, geophones) that
capture high-frequency fluctuations, while plan-view mapping and DEMs supply the
configuration context needed to interpret those fluctuations at reach scale (Recking et al.,
2024; Vericat et al., 2017).

In applied terms, forecasting bedload is not about chasing the exact trajectory of Q(t);
it is about quantifying how morphological regimes allocate time and flux. Probabilistic
forecasts tied to observable states are more actionable for flood protection, reservoir
sediment budgeting, gravel-mining quotas, habitat maintenance, and post-event recovery
than a single site-wide mean. They respect the irreducible intermittency of coarse-bed
transport, leverage information contained in form, and acknowledge that management
decisions must plan for ranges rather than point values (Ancey, 2020a; Habersack et al.,
2008; Recking et al., 2024; Vericat et al., 2017).
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1.8 Knowledge gap, aim, and research questions

Although planform descriptors such as BI/eBI, active width, junction density, connectivity
analyses, and entropy-based metrics are well established, and although synoptic imagery
and repeat topography are now routinely available, most applications still stop at descrip-
tion or bulk inference rather than moving toward forward prediction with quantified
uncertainty (Booker & Eaton, 2021; Sambrook Smith et al., 2006; Tejedor et al., 2015a, 2015b,
2022; Vericat et al., 2017). At the other end of the spectrum, physics-based morphodynamic
models struggle to propagate uncertainty and to remain reliable at braidplain scale under
strong nonlinearity and changing configurations (Church & Ferguson, 2015; S. N. Lane,
2006). Between these two extremes there is still no operational framework that can
translate widely available image data into transport-relevant morphological states, rep-
resent their alternation with a tractable stochastic dynamic, and use that representation
to produce probabilistic transport forecasts with explicit uncertainty.

This missing middle ground defines the knowledge gap. Current research has shown
that braided planforms are not purely descriptive but carry predictive signal when cast
as multi-state systems (Ancey, 2020a; Jagers, 2003; Recking et al., 2024; Tejedor et al.,
2015a; Vericat et al., 2017). However, existing work has not yet provided a systematic
way to transform image-based descriptors such as wetted width or eBI into probabilistic
transport predictions that account for intermittency, burst structure, and configuration
dependence. A framework that can achieve this would provide the needed bridge
between descriptive metrics and physics-heavy models.

Building on this gap, the aim of this thesis is to construct a practical link from image-
derived morphology to probabilistic forecasts of braided dynamics and sediment trans-
port. Concretely, our work seeks to (i) define observable morphological states from
plan-view data, (ii) represent their alternation with a continuous-time Markov chain
(CTMC) calibrated to data, and (iii) use that representation to generate transport time
series under different data-availability scenarios, with quantified uncertainty and objective
acceptance criteria.

Research questions

RQ1: Image — state. How can planform image sequences be converted into a compact set
of discrete, transport-relevant morphological states while preserving the gradient
from simple to highly braided configurations?

RQ2: State dynamics. Do the observed transitions among states obey approximately
Markovian behavior with exponential sojourns, and do estimated rates organize
consistently with planform complexity and transport capacity?

RQ3: Forecasting and uncertainty. To what extent can CTMC-driven Monte Carlo se-
quences, combined with state-conditioned bootstrap of @, reproduce the empirical
mean, variance, and bursts of transport under explicit accept/reject screening and
simple image-only prefilters?
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RQ4: Morphology—transport links. Which image descriptors (e.g., wetted width, eBI)
most strongly control inter-state contrasts in transport level and intermittency, and
how do state sequences organize multi-minute transport bursts?

RQS5: Transferability. How robust is the image-to-forecast workflow across data regimes
(laboratory vs. image-only) and methodological choices (distance metrics, dimen-
sionality reduction, clustering), and how can uncertainty be partitioned across
these stages?

Objectives

O1: Build a scalable image analysis pipeline to extract binary water masks, compute
complementary distances (e.g., Modified Hausdorff and DICE), and obtain discrete
morphological states via reduction and clustering (UMAP/PCA + HDBSCAN),

yielding an interpretable state space.

02: Estimate a CTMC from the state sequence by fitting exponential dwell times and
jump probabilities, thereby specifying the generator for analysis (occupancies,
mean first passage) and forward simulation.

03: Quantify inter- and intra-state transport behavior by associating empirical @,
samples to each state, enabling state-conditioned bootstrap that preserves between-
state contrasts and within-state scatter.

O4: Generate large ensembles of synthetic trajectories via Monte Carlo + bootstrap,
enforce acceptance on transport moments (ABC-style), and derive conservative,
image-only decision rules to pre-screen acceptable sequences.

05: Diagnose morphology-transport couplings (e.g., strong negative associations of
eBl and wetted width with the mean and variability of @);) and relate state cascades
to observed multi-minute transport bursts.

06: Quantify and report uncertainty throughout, and test sensitivity /robustness to
methodological choices using the Chapter 4 framework.

Contributions

This thesis contributes: (i) an end-to-end image-to-state pipeline yielding an interpretable
state space; (ii) a data-calibrated CTMC whose residence rates align with planform com-
plexity and transport capacity; (iii) a Monte Carlo + state-conditioned bootstrap generator
of transport series with explicit acceptance; and (iv) conservative, image-only screen-
ing rules that approximate the physical filter, enabling forecasting from imagery even
when direct transport measurements are scarce. Together, these elements form a practical
bridge from images to probabilistic forecasts of braided-river evolution, emphasizing
interpretability, scalability, and quantified uncertainty, and they motivate semi-Markov
extensions to better capture low-frequency variability identified in Chapter 4.
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1.9 Roadmap of the thesis

This document is organized into five main chapters:

¢ Chapter 1 (this chapter): introduces the overall research context, highlights the
importance of studying sediment transport and morphological dynamics in braided
rivers, reviews the state of the art with emphasis on chaos theory, Shannon’s infor-
mation theory, and probabilistic/Markov models in hydrology and geomorphology,
and states the objectives and hypotheses guiding the study.

¢ Chapter 2: describes the methodology, including experiments focused on build-
ing the probabilistic Markovian model, as well as the techniques used for data
acquisition and analysis.

o Chapter 3: presents the results related to the construction and selection of the
Markovian model, covering the distance matrix, dimensionality reduction methods,
clustering alternatives, and the justification for the final model configuration. It also
includes the characterization of the obtained cluster space.

o Chapter 4: addresses the statistical validation of the selected model, reporting
Bayesian inference results, bootstrap analyses, decomposition of variability between
transitions and within states, and sensitivity and robustness tests.

o Chapter 5: provides the general conclusions, summarizes the main contributions,
and offers recommendations for future research on the morphological and sedimen-
tological dynamics of braided rivers.
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This study investigates how sediment is transported and how channel forms evolve in
braided rivers using a controlled laboratory setting. We designed a long-duration experi-
ment that captures slow morphological adjustments while keeping boundary conditions
constant. The configuration allows us to observe hydrodynamic and morphological pro-
cesses with the resolution needed to evaluate mechanisms of sediment motion and pattern
change.

The experiment targets the long-term evolution of a braided pattern under steady dis-
charge in order to test a probabilistic description of system dynamics. We explore whether
the sequence of planform configurations can be represented as a Markov process with
states defined by shape and by time. The flume was run for more than one thousand hours
so that a broad set of bed configurations could emerge without external forcing transients.

The remainder of the chapter documents the facility and operating conditions, the image
acquisition and processing workflow, the construction of spatial similarity measures,
the dimensionality reduction and clustering used to define states, and the probabilistic
modeling and validation steps that connect state sequences to transport behavior.
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2.1 Overview of the Process

As mentioned above, this experimental facility was conceived to test the hypothesis that
braided river systems behave in a probabilistic manner and can be modeled as a Markov
Chain. To achieve this, our main assumption is that the river can be conceptualized as a
combination of distinct morphological states, each defined by its specific shape and spatial
distribution over both space and time.

We conducted three runs under identical boundary conditions. The main, continuous
run lasted approximately 1200 hours (hereafter ExpL) and provided the record used to
learn the morphological state space and calibrate the continuous-time Markov chain. To
test external validity, we performed two additional, independent realizations of about
200 hours each (ExpA and ExpB), processed with the same pipeline and reserved for
out-of-sample evaluation of state recurrence, transition structure, and transport statistics.
All runs were imaged every minute and accompanied by continuous outlet bedload
monitoring, yielding a long, high-cadence dataset suitable for estimating dwell times,
transition probabilities, and state-conditioned transport.

Figure 2.1 illustrates the comprehensive process undertaken to analyze and model the
braided river system using a Markov Chain approach. The process begins with the
acquisition of high-resolution images of the experimental flume every one minute, which
are then processed into binary masks where only the water morphology is represented

Pattern analysis & state

in white and all other elements in black. This transformation isolates the morphological
Pprocessing definition

features of the river at each discrete time step.
- High-res images every 1 min —‘ - Calculate MHD and DICE slmilarity—‘ es_‘
- Convert to binary masks - Dimensionality reduction
- Clustering to define states

Figure 2.1: Flowchart of the process used to build the Markov model. The procedure starts
with image acquisition and processing to extract morphological features. Pattern analysis
and state definition are performed through similarity metrics, dimensionality reduction,
and clustering. Transition probabilities between states are estimated from the empirical
sequence, followed by Monte Carlo simulations to generate synthetic series. Finally, the
model is validated by comparing synthetic and observed data across multiple metrics.

g e erpiliin i fansiion iy Monte Carlo simulations Model Validation
estimation

- Analyze empirical sequence of stat
- Build Markov transition matrix

- Generate synthetic state sequences - Synthetic vs. observed sequences
- Transitions using Markov probabilities - Check frequencies, transitions, durations

The next step involves defining the discrete states of the system through a clustering pro-
cess. To achieve this, spatial similarity metrics such as the Modified Hausdorff Distance
(MHD) and the DICE index are calculated to quantify the similarity between different
morphological configurations. These metrics generate a distance matrix that captures the
morphological similarity, allowing the differentiation of distinct river states. To manage
the complexity inherent in high-dimensional morphological data, dimensionality reduc-
tion techniques are employed, simplifying the data while preserving essential structural
information. Following dimensionality reduction, we apply density-based clustering
algorithms to group similar morphological states into distinct clusters, each representing
a unique state in the Markov model.
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Once the states have been established, empirical transition probabilities between these
states are calculated on the basis of the observed sequence of states throughout the experi-
ment. This results in the construction of an experimental Markov Chain that effectively
captures the dynamic behavior of the river system. Each state within the Markov Chain is
further characterized by its morphology and sediment transport properties, with unique
sediment transport distributions assigned to each morphological state, thereby linking
morphological configurations to sediment dynamics.

The final stage of the process involves the application of Monte Carlo Simulations to
generate synthetic sequences of states that emulate the experimental observations. Monte
Carlo Simulations enable the exploration of a wide range of potential future scenarios
by randomly sampling state transitions based on the established Markov transition prob-
abilities. To ensure that these synthetic sequences accurately reflect the real system’s
behavior, each simulation is evaluated against the original experimental data using a
series of distance-based metrics. These metrics assess the similarity of synthetic sequences
to the observed data across various dimensions, including state frequencies, transition
probabilities, duration distributions, and overall sequence similarity. Simulations that
meet predefined thresholds across all metrics are considered acceptable, resulting in a big
ensemble of synthetic series that faithfully represent the observed system dynamics.

This section will describe each component of the aforementioned process in detail. We
will begin by describing the characteristics and instrumentation of the experimental flume,
followed by an in-depth discussion of the data analysis methods employed, including
image processing, spatial similarity metrics, dimensionality reduction, and density-based
clustering. Subsequently, we will outline the probabilistic modeling approach through
Markov Chains and Monte Carlo Simulations, and conclude with the tools and techniques
used to study and validate the results of the Markov model. This structured approach
ensures a comprehensive understanding of how braided river morphodynamics can be
effectively captured and analyzed within a probabilistic framework.

2.2 Flume Characteristics

Note on the experimental facility selection.

This project began with a larger facility (2 m wide, 11 m long), on which I worked for
more than two years developing the setup, instrumentation, and calibration. Early trials,
however, revealed that the wide channel allowed water to move with greater freedom,
creating an enormous range of possible configurations. As a result, experimental runs
had to be extremely long in order to capture transitions. Because safety and budget
constraints limited operation to a maximum of 12 hours per day, the calendar time needed
to obtain long records effectively doubled. To overcome this, we shifted to a smaller
flume that could operate continuously, accepting the extra effort required for rebuilding
and recalibration. This adjustment preserved the scientific objectives while making data
collection feasible. Results from the large-flume experiments are not presented here, but
have been archived for potential future use beyond the scope of this thesis.
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A natural question was whether the small flume (3.3 m x 1.0 m) was indeed “too small”.
First, the smaller channel is easier to manage and can run without interruption, which is
essential for collecting long image sequences and capturing transition statistics. Second,
the narrower corridor, while still supporting braiding and bar dynamics, limits the number
of admissible planform configurations compared to a wider channel. This restriction
reduces the effective state space and shortens the experimental time required to observe
recurring morphologies and estimate transition probabilities with precision. Small to
moderate laboratory channels of similar dimensions (1.0-2.0 m wide, 2-12+ m long) have
been used before in braided- and bar-forming studies (Bertoldi & Tubino, 2005; Davies &
Lee, 1989; Métivier & Meunier, 2003; Paola, 2001; Pryor et al., 2011). Moreover, recent small
scale experiments confirm that laboratory rivers capture robust transport-morphology
coupling and self-organization, demonstrating that reduced geometries can reproduce the
essential physics needed here (Abramian et al., 2020).

The main compromise of this change of facility involved instrumentation. The smaller
flume could not accommodate as many monitoring tools as the original setup, and full
bed reconstruction via structure from motion, which was part of the initial plan, was no
longer possible. We therefore concentrated on two observables directly aligned with the
probabilistic framework: (i) an extended, minute-resolution planform image series (binary
water masks) for state definition and transition counts, and (ii) continuous outlet bedload
measurements for transport diagnostics. This combination was able to provide what the
Markov chain based analysis required: repeatable planform states, well-sampled dwell
times and switches, and transport summaries conditioned on configuration.

As we mentioned before, the experimental flume used in this study (see Figure 2.2)
measures 3.3 m in length and 1.0 m in width. Detailed dimensions and additional char-
acteristics of the flume are summarized in Table 2.1. In total, three experiments were
conducted under identical boundary conditions: a long continuous run of about 1200
hours (ExpL), used to learn the morphological state space and calibrate the Markov model,
and two shorter independent realizations of about 200 hours each (ExpA and ExpB), used
for out-of-sample validation of recurrence, transition structure, and sediment transport.
All runs were imaged every minute and paired with continuous outlet bedload monitoring,
ensuring a long, high-cadence dataset for both morphological and transport analyses.

The flume is uniformly filled with unimodal sand characterized by a median grain size
(ds0) of 1 mm, ensuring consistent sediment transport dynamics throughout the experi-
ments. The channel slope is maintained at 3%, providing a steady gravitational force to
drive the water flow and sediment movement. A constant flow rate of 0.15 L/s is con-
trolled using an automated valve system connected to a National Instruments USB-6001
data acquisition card and managed via a MATLAB script (Figure 2.3a-b), allowing precise
regulation of the water supply across all runs.
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Table 2.1: Experimental flume dimensions, characteristics, and runs.

Parameter Value

Length [m] 3.3

Width [m] 1.0

Slope [%] 3

Sediment type Unimodal, dsp = 1 mm

Flow rate [L/s] 0.15 (constant)

Sediment feeding method Vibrator, funnel, and container with water
Sediment feed rate [g/s] 1.5 (constant)

Main run (ExpL) ~1200 h, continuous, calibration dataset
Validation runs (ExpA, ExpB) ~200 h each, independent realizations
Imaging 1 image/min

Transport monitoring Load cell system

Figure 2.2: Photograph of the 3.3 m x 1.0 m laboratory flume used in this study. Water is
dyed blue to enhance planform visibility; the overhead frame supports the imaging and
feeding systems.
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Sediment feeding into the flume is achieved through a combination of a vibrator, funnel,
and sediment container (see Figure 2.2). To prevent blockages and ensure a steady supply
of sand, a small amount of water is added to improve the coupling between the vibrator
and the container. This setup was calibrated during preliminary runs and adjusted to
deliver a constant sediment input rate of 1.5 g/s, which keeps the inlet free of erosion
and deposition. The vibratory mechanism dislodges sand particles, and the funnel directs
sediment into the channel without interrupting the flow.

Sediment transport is measured with a strain gauge-based system. A collection basket
captures sediment leaving the flume and is suspended from a 50 kg strain gauge with a
precision of 0.03% of the maximum load (15 g). The strain gauge is interfaced with the
USB-6001 and a computer running MATLAB. Measurements are acquired at 10000 Hz,
then averaged over 60-second intervals and stored in text files. This averaging reduces
noise and improves the reliability of transport estimates. As shown in Figure 2.3c—e, the
strain gauge cell and its power/DAQ electronics provide continuous, precise monitoring
of sediment weight.

Initially, a video-based sediment measurement system similar to Zimmermann et al. (2008)
was considered. In that approach, high-resolution cameras and a backlit surface are used
to track sediment particles continuously. In our setting this proved impractical since
the particles of sand are too small; a backlit surface would have been too close to water,
creating safety issues; front lighting produced shadows that degraded particle detection;
and the data volumes required heavy nightly post-processing with limited options for
re-analysis. For these reasons, the strain gauge-based system was adopted as a safer and
simpler alternative.

Additionally, the flume is equipped with a Nikon D700 camera fitted with a wide-angle
lens and fixed at a height of 2.5 m above the channel floor (Figure 2.3d). This configuration
covers the entire channel in a single frame, capturing high-resolution images that delineate
water boundaries. To enhance visibility, the water is dyed blue using food colorant.

In summary, the facility and instrumentation were configured to enable long, uninter-
rupted image sequences and continuous sediment measurements across three experi-
mental runs. Together, ExpL, ExpA, and ExpB constitute the core dataset of this study,
providing the basis for state definition, transition counting, and probabilistic modeling in
the following sections.
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Figure 2.3: Components of the experimental setup: (a) flow-control valve; (b) magnetic
inductive flow meter; (c) force sensor (strain gauge) measuring the mass of sediment
exiting the channel; (d) fixed camera (Nikon D700) capturing an image of the channel
every 1 min; (e) power supply and data-acquisition board.

2.3 Image Processing

The process of constructing masks from the original images was a critical step in the
workflow. The same procedure was applied to all images, ensuring a reproducible process
for the entire dataset. The steps were:

(i) Crop. We first cropped each image to the interior of the flume, retaining only the region
where water flows over the sand and removing borders and hardware.

(ii) HSV water mask. We then generated a binary water mask using a filter in HSV color
space tuned to the blue dye, which effectively separated water from dry bed material.
This follows the approach of Scheidt et al. (2016a).

(iii) Downscaling. Masks were resized to reduce memory footprint and speed up subse-
quent calculations, which is essential given the size of the image archive.
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(iv) Edge map for MHD. Finally, we computed a one-pixel edge map from the binary
mask (i.e., the water boundaries). This edge representation is what we use in the Modified
Hausdorff Distance (MHD) calculations between images, as it preserves planform structure
while reducing sensitivity to small width fluctuations and greatly accelerating distance
computations.

All steps were implemented in Python using open-source libraries; the code is provided
in Appendix A so the procedure can be replicated or adapted.

The evolution of the images through each step is shown in Figure 2.4: original photo —
cropped region — HSV mask — edge map used for the MHD analysis.

Figure 2.4: Image processing workflow. From left to right: original image, cropped flume
interior, binary water mask obtained via HSV filtering, and the final edge map (one-pixel
water boundaries) used for the Modified Hausdorff Distance (MHD) computations.

2.4 Distance Matrix Construction

After establishing the characteristics and instrumentation of the experimental flume, the
next step is to analyze the captured morphological data to identify and group similar
river configurations. Spatial Similarity Metrics are crucial for quantitatively determining
how alike different morphological states are, which is essential for our objective of classi-
fying and modeling distinct river shapes based on their spatial features. The following
subsections will discuss the specific metrics used in this analysis, namely the Modified
Hausdorff Distance and the DICE index, highlighting their roles in distinguishing and
grouping similar morphological forms.

26



Materials and Methods Chapter 2

EUCL = 1,00
>

EUCL=1.02
EUCL = 97\ /

Figure 2.5: Comparison of similarity metrics using binary representations of digit-like
shapes. The Euclidean distance (EUCL) fails to differentiate structural differences effec-
tively, while the Modified Hausdorff Distance (MHD) captures edge-based structural
variations more accurately. The figure highlights the advantages of MHD in capturing
morphological differences between shapes. Image from Scheidt et al. (2016b).

2.4.1 Modified Hausdorff Distance

The Modified Hausdorff Distance (MHD) was first introduced by Dubuisson and Jain
(1994) to address the limitations of the traditional Hausdorff Distance (HD). HD is a metric
designed to quantify the similarity between two sets of points by evaluating the maximum
distance between the closest points of the two sets. For two finite sets A = {a;, ag,...,an}
and B = {b1, ba, ..., by}, the HD is mathematically defined as:

dp(A, B) = max {Icllleaj( min d(a,b), max min d(b, a)} , (2.1)

where d(a, b) represents the Euclidean distance between two points a and b, calculated as:

d(a,b) = \/(az — bx)? + (ay — b,)2. 2.2)

Although effective in capturing global dissimilarities, the HD is highly sensitive to outliers
because of its reliance on maximum distances. For example, a single point significantly
displaced in one set can dominate the computation, leading to an overestimation of
dissimilarity. In contrast, simpler metrics, like the mean pairwise Euclidean distance, fail
to capture structural differences between point sets because they do not consider spatial
arrangements. These limitations are particularly evident when analyzing complex shapes,
as shown in Figure 2.5.

Figure 2.5 illustrates the comparison between the Euclidean distance and the MHD for
binary masks representing digit-like shapes. The HD and Euclidean distance metrics can
fail to differentiate structurally distinct shapes due to their sensitivity to outliers or the
averaging effect of interior points. In contrast, the MHD better captures shape similarities
by focusing on the distribution of the points along the edges.
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To address these challenges, Dubuisson and Jain proposed the MHD, which replaces
the maximum operation in the HD with an averaging approach, thereby reducing the
influence of outliers. The directed MHD is defined as:

MHD(A, B) Z mlndH (a,b), (2.3)

IA\

where |A| is the number of points in set A. The symmetric MHD combines directed
distances in both directions:

MHD,ym(A, B) = % (MHD(A, B)+ MHD(B, A)). (2.4)

As demonstrated before, the MHD better captures structural differences by focusing on
edge points, which define the shape of the objects in the binary masks. Including interior
points would unnecessarily increase the computational load without providing additional
relevant information, as the similarity between shapes is determined primarily by their
boundaries. This approach ensures that the computational effort is concentrated on the
most informative regions, significantly improving efficiency.

In this study, the MHD is applied to compare binary masks generated from experimental
flume images. These masks identify areas of water and dry regions, and the edges of
these masks are used to compute the MHD, as they represent the morphology of the
flow patterns. While focusing on edge points reduces the per-comparison cost, both the
MHD and the Dice coefficient become computationally demanding at this scale because
pairwise distances must be evaluated for the full minute-resolution record. To make
the task feasible, we implemented from scratch a parallel, GPU-accelerated version of
the MHD and validated its accuracy against the skimage.metrics implementation
(van der Walt et al., 2014). Despite this acceleration, computing the full MHD matrix
required approximately 2 months of continuous runtime on a dedicated workstation. Dice
coefficients (see 2.4.2) were computed with vectorized routines (skimage .metrics), and
although cheaper per comparison, they still contributed substantial wall-clock time due to
the number of pairs. The code is provided in Appendix B.

2.4.2 Dice Index

The Dice Index, introduced by Lee R. Dice in 1945, is a well-established measure of
similarity that evaluates the overlap between two sets. It is mathematically defined as:

21AnC|

Dice(A4,C) = AT+l

(2.5)

where A and C are the two sets being compared, |A| and |C| represent their respective
sizes, and | AN C/ is the size of their intersection. The coefficient ranges from 0 (no overlap)
to 1 (perfect match).
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As illustrated in Figure 2.6, the Dice Index can be represented by a Venn diagram where
the overlapping region B corresponds to the intersection between sets A and C. The
calculation is visualized as twice the area of B divided by the total areas of A and C,
highlighting its focus on shared regions.

A B C

DICE =

A + C

Figure 2.6: Illustration of the Dice Index calculation using a Venn diagram. The overlap
region B represents the intersection between sets A and C'. The Dice Index is calculated as
twice the intersection area divided by the total area of both sets, emphasizing the shared
elements between the sets.

In this study, the Dice Index is used alongside the Modified Hausdorff Distance (MHD)
to provide a comprehensive comparison of binary masks. While the MHD captures
edge-based structural differences, the Dice Index emphasizes volumetric overlaps (e.g.,
water-covered regions in the masks). This combination ensures that both structural
and spatial relationships are represented, offering a robust framework for analyzing the
distribution of water and dry areas in the experimental flume images. The Dice Index
was computed using the implementation available in the Python library scikit-image,
ensuring precision, reliability, and computational efficiency without the need for custom
code.

2.4.3 Combined Matrix

To integrate the complementary information provided by the Modified Hausdorff Distance
(MHD) and the Dice Index, we constructed a combined matrix by concatenating the two
distance matrices rather than merging them through weighted averaging. This decision
was motivated by the absence of prior knowledge regarding the relative importance of
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edge-based (MHD) and area-based (Dice) similarities and by the need to avoid introducing
arbitrary weighting factors.

Specifically we computed two separate distance matrices, one based on normalized MHD
values and another based on Dice-derived dissimilarities. These matrices were concate-
nated along the feature axis to form a single composite matrix that jointly represents both
structural and spatial aspects of morphological similarity. This composite matrix effec-
tively doubles the feature space, allowing downstream analyses such as dimensionality
reduction and clustering to learn the relative contributions of each metric without manual
tuning.

By adopting this approach we ensured that both edge configurations and volumetric over-
laps were equally available to the clustering algorithms, while preserving the flexibility to
let data-driven methods such as principal component analysis or UMAP determine the
most informative patterns. This concatenated matrix served as the input for the clustering
pipeline described in Section 2.6.3, providing a robust foundation for defining the discrete
morphological states used in the Markov modeling framework.

2.5 Dimensionality Reduction

2,51 What is dimensionality reduction?

Dimensionality reduction provides a practical way to analyze complex datasets such as
the high-dimensional morphological information extracted from flume images. In fluid
mechanics, Proper Orthogonal Decomposition (POD), which is essentially PCA applied to
snapshot data, is widely used to extract energetic modes and build reduced-order models
(Cammilleri et al., 2013; Taira et al., 2020). In the same spirit, here we project data onto
low-dimensional spaces to enable efficient visualization, interpretation, and computation
while preserving the structures most relevant to the task (Fukunaga, 1990; van der Maaten
etal., 2009).

A key motivation to do this is the "curse of dimensionality". As the number of features
grows, distance metrics lose discriminative power, noise can overwhelm signal, and
algorithms become unstable or prohibitively expensive. This phenomenon, formalized by
Bellman (1961), is directly relevant here because the combined MHD and Dice descriptors
yield feature vectors with thousands of components, many of them low-variance or
redundant, which complicates downstream analysis.

No single dimensionality-reduction method is universally best. Datasets differ in structure,
noise, and how information is distributed, so methods make different trade-offs between
preserving variance, neighborhood relations, or global geometry (van der Maaten et
al., 2009). Some techniques emphasize global structure, while others prioritize local
relationships or manifold assumptions.

In this study we compare four complementary approaches (i.e., PCA, MDS, t-SNE, and
UMAP) to represent morphological patterns. Each highlights different aspects of the
data. PCA provides a linear projection that retains maximal variance under orthogonal-
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ity constraints; MDS seeks an embedding whose pairwise distances match the original
dissimilarities, aiding interpretation of global spatial relationships; t-SNE concentrates
on local neighborhood structure suited to visualization of nonlinear clusters; and UMAP
targets both local and meso-scale structure with favorable runtime and scalability.

2.5.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a linear dimensionality reduction technique that
finds orthogonal directions of maximum variance called principal components. Projecting
the data onto the first components reduces dimensionality while keeping most of the
variability. In Figure 2.7 top left, PCA forms a broad cloud with partial mixing of colors,
which reflects good capture of global variance but limited separation of classes. This
behavior is typical for our morphological descriptors when the structure is only weakly
linear.

Mathematically, given a zero-mean data matrix X € R"*?, PCA solves the eigenvalue
problem for the covariance matrix C = —L-X"X

Cwi = A\ Wy, A=A 2> 2> 0,20,

where ), is the variance explained by the k-th principal component wy,. The data are then
projected as Z = XWy, with W, = [wy, ..., wg].

Before computing PCA, each feature of the composite MHD+Dice matrix is standardized

to zero mean and unit variance
- Lig — Hj
CL‘Z'j = ' s
Tj
so that PCA ranks components by informative variance rather than by scale.

The cumulative explained variance

k A\
V(k) = Z p : s
j=1 ~~j=1"1
is inspected and the smallest k£ with V (k) > 0.99 is retained. The resulting Z serves as
input for the following embeddings (MDS, UMAP and t-SNE) and for the clustering
algorithms described later.

2.5.3 Multidimensional Scaling (MDS)

Multidimensional Scaling preserves pairwise distances when mapping data to a lower
dimensional space. Unlike PCA, which emphasizes variance with a linear projection, MDS
aims to reproduce dissimilarities. In Figure 2.7 top right, MDS arranges the samples in
a roughly circular layout with moderate overlap. This representation helps read global
relationships but separation of classes is still limited. MDS accepts many distance choices,
which is useful for morphology, although its cost grows quickly with dataset size and
results can depend on the selected metric.
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PCA (2D) MDS (2D)

Figure 2.7: Comparison of dimensionality reduction methods on the Digits dataset. Panels
show 2D projections using PCA top left, MDS top right, UMAP bottom left, and t-SNE
bottom right. Colors denote digit classes. PCA and MDS give diffuse arrangements with
gradual mixing. UMAP and t-SNE produce compact groups that are easier to cluster.

2.5.4 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE models local neighborhoods and keeps them coherent after projection, which is
ideal when the data form tight, non-linear clusters. In Figure 2.7 bottom right, t-SNE
produces very clean group separation with sharp boundaries. This clarity is valuable for
defining discrete morphological states and for clustering. The Student-¢ kernel alleviates
the crowding problem and increases contrast between nearby groups, often revealing fine
substructure that other methods merge. Results can change with perplexity and global
distances are not metric faithful, yet within-cluster geometry and neighborhood purity are
often best preserved with t-SNE on our descriptors.
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2.5.5 Uniform Manifold Approximation and Projection (UMAP)

UMAP builds a graph of local neighborhoods and optimizes a low-dimensional embed-
ding that balances local and broader structure. In Figure 2.7 bottom left, UMAP yields
compact groups while maintaining meaningful spacing among them, which helps inter-
pret relations between clusters and gradual transitions. UMAP is usually faster and scales
well, though performance depends on hyperparameters such as the neighborhood size.
Using both embeddings is helpful. t-SNE excels at isolating crisp clusters for state defini-
tion, whereas UMAP complements it by arranging those clusters with more interpretable
inter-cluster geometry.

2.6 Density-Based Clustering

Clustering techniques are helpful for identifying natural groupings in data without re-
quiring predefined categories. These methods could be particularly useful for analyzing
complex datasets, such as the morphological patterns observed in our flume experi-
ments. In this study, two density-based clustering algorithms were employed: DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) and HDBSCAN (Hierar-
chical Density-Based Spatial Clustering of Applications with Noise). Both techniques are
good at detecting clusters of arbitrary shapes and handling noisy data, which makes them
well suited for embeddings where point distributions are curved and densities vary.

Each of these algorithms operates under unique principles, which influence their behavior
and performance in different contexts. Below, we provide a detailed description of
DBSCAN and HDBSCAN, focusing on their mechanisms and on what the side-by-side
result in Figure 2.8 reveals about their practical use in this work.

2.6.1 DBSCAN: Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups points
according to local neighborhoods in the feature space (Ester et al., 1996). The algorithm
partitions the dataset into dense regions separated by sparser areas, which is effective for
detecting clusters of arbitrary shapes and sizes. DBSCAN defines two key parameters:
epsilon (¢) and minPts. Epsilon specifies the maximum distance between two points
for them to be considered neighbors, and minPts represents the minimum number of
points required to form a dense region or cluster. A point is classified as a core point if its
e-neighborhood contains at least minPts points, which enables the iterative expansion of
clusters by including other density-reachable points.

Figure 2.8 (left) shows DBSCAN applied to a two-dimensional synthetic set generated
with make_moons (n=500, noise = 0.2). Parameters were fixed at ¢ = 0.1 and minPts = 5,
which are consistent with the code used to create the figure. Under these settings the
algorithm identifies many small clusters that correspond to pockets of high local density
along each moon and it assigns a large fraction of points to the noise label —1. This
outcome illustrates two typical behaviors. First, a single global e can fragment curved
manifolds when density varies along the structure. Second, the noise fraction can grow
quickly when the chosen ¢ is smaller than the typical spacing in sparser parts of the data. In

33



Chapter 2 Materials and Methods

our morphological embeddings, which exhibit gradients in point density across the state
manifold, this sensitivity implies that DBSCAN is best used for rapid probing, parameter
sweeps, and identification of conservative cluster cores rather than as the sole basis for
defining final states.

When using DBSCAN, several challenges and considerations should be kept in mind. The
selection of appropriate parameter values for e and minPts is crucial, as it significantly
affects the results. Determining useful values often requires experimentation and domain
knowledge. DBSCAN is sensitive to variations in data density and noise levels, which may
necessitate careful preprocessing of the dataset to ensure meaningful results (Schubert et al.,
2017). Despite these challenges, DBSCAN remains a powerful tool for identifying spatial
patterns and structures within datasets. Its simplicity and ability to detect nonconvex
shapes make it valuable in exploratory phases, including the early analysis of our flume-
derived state clouds.
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Figure 2.8: Comparison of DBSCAN (left) and HDBSCAN (right) on a synthetic two-
moons dataset generated with make_moons (n=500, noise = 0.2). DBSCAN parameters:
e = 0.1, minPts = 5. HDBSCAN parameter: min_cluster_size = 10. Colors indicate
cluster labels and points with label —1 are treated as noise. DBSCAN fragments the curved
manifolds into many small clusters and classifies many points as noise under a single
global density threshold. HDBSCAN recovers the two dominant arcs as coherent clusters
while leaving sparse outliers as noise, which illustrates its adaptation to varying density.

2.6.2 HDBSCAN: Hierarchical Density-Based Spatial Clustering of Applica-
tions with Noise

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
extends DBSCAN to datasets where densities vary across clusters (Campello et al., 2013,
2015). Instead of fixing a single ¢, HDBSCAN evaluates structure over a range of density
levels. It does so by computing core distances to the k-nearest neighbors, transforming
them into a mutual reachability graph, and building a hierarchy of cluster splits as the
density threshold changes. Cluster selection is then based on stability, which measures
how persistent a cluster is across that hierarchy. This process reduces the sensitivity to a
single neighborhood scale and enables robust extraction of clusters that differ in internal
density (McInnes & Healy, 2017).
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The right panel of Figure 2.8 usesmin_cluster_size = 10 and shows that HDBSCAN
recovers two large, nonconvex clusters that follow the moons while assigning only the
sparsest points to the noise label —1. This matches the intended use in our application.
State clouds obtained from image-derived embeddings frequently present curved struc-
tures and density gradients, which are shaped by sampling frequency, dwell times, and
the intrinsic variability of morphological states. A hierarchical evaluation of density better
respects these gradients and avoids the over-fragmentation observed with a single global
e. In addition, HDBSCAN provides measurement of cluster membership strengths that
help identify core exemplars and boundary points, which is useful when we later select
representative medoids of each morphological state.

HDBSCANs ability to extract clusters of varying densities and its reduced dependence
on user-defined neighborhood radii make it particularly suitable for high-dimensional
datasets such as the morphological data analyzed in this study. By combining stability
with density-based principles, HDBSCAN enhances the interpretability and robustness
of clustering results. As with DBSCAN, the algorithm distinguishes noise points, which
yields cleaner state definitions for downstream estimation of transition matrices and
dwell-time distributions.

It is worth noting that trying both DBSCAN and HDBSCAN can provide complementary
insights. DBSCAN'’s simpler parameterization and efficiency make it suitable for datasets
with more uniform densities or with well-separated cores. HDBSCAN excels in more
complex scenarios where clusters have varying densities or hierarchical relationships.
Since no single method works optimally for all datasets, applying both ensures a more
comprehensive exploration of clustering structures. In this work we relied on DBSCAN
to probe parameter ranges and to identify conservative cluster seeds, and we used HDB-
SCAN to obtain the final partitions that align with the continuous, curved manifolds
observed in the embeddings and that support stable, morphology-based state definitions
for the Markov model.

2.6.3 Metrics for Cluster Quality Assessment

To assess the quality of the clustering solutions obtained from the grid search, we com-
puted three widely used internal validation indices: the Silhouette coefficient, the Davies—
Bouldin index, and the Calinski-Harabasz index. Additionally, we calculated the fraction
of points labelled as noise, which is particularly relevant for density-based clustering
algorithms.

The Silhouette coefficient measures the cohesion and separation of the clusters. For each
point, it compares the mean intra-cluster distance (how close the point is to other points
in its cluster) to the mean nearest-cluster distance (how far it is from points in the closest
neighboring cluster). Values range between —1 and 1, where higher values indicate better
defined and more separated clusters.
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The Davies-Bouldin index quantifies the average similarity between each cluster and
its most similar one, based on the ratio of within-cluster dispersion to between-cluster
separation. Lower values reflect better clustering solutions, characterized by compact,
well-separated clusters.

The Calinski-Harabasz index, also known as the variance ratio criterion, compares the
between-cluster dispersion to the within-cluster dispersion. Higher values are preferred,
indicating well-separated and dense clusters.

The fraction of noise points corresponds to the proportion of data points that were not
assigned to any cluster and instead labelled as noise. This metric is crucial when using

algorithms like DBSCAN or HDBSCAN, as it helps balance the trade-off between detecting
meaningful clusters and overfiltering the data.

These metrics were computed for all combinations of hyper-parameters tested in the
grid search. They provide complementary perspectives on cluster quality because the
Silhouette coefficient emphasizes individual point assignments, while the Davies-Bouldin
and Calinski-Harabasz indices assess overall cluster configuration. It is crucial to note that
none of these metrics should be interpreted in isolation. For example, a high Silhouette
score might trivially result from assigning each point to its own cluster, while low noise
fractions could reflect overly coarse clustering.

As explained later, the final selection of clustering configuration involved a combined
approach of visual inspection of cluster patterns (see Figure 3.8) and critical examination
of the numerical metric matrix (Table 3.3). This balanced evaluation ensured that the
chosen clustering solution was both quantitatively robust and qualitatively meaningful
for subsequent analyses.

2.6.4 Metrics for Cluster Morphological Description

To quantitatively describe the morphological characteristics of each cluster, we computed
five planform metrics capturing key aspects of channel geometry and complexity.

(a) Wetted width — Mean cross-stream distance between the wetted banks, providing
a first-order measure of channel scale.

(b) Wetted area — Horizontal area occupied by water in the binary mask, reflecting the
extent of active flow.

(c) Sinuosity — Ratio of centerline length to straight-line valley length, quantifying the
degree of channel meandering.

(d) Braiding Index (BI) — Defined as the average number of independent wetted
threads per cross-section, the Bl is a classical and widely used metric to characterize
braided rivers (Egozi & Ashmore, 2008). However, it is purely a count and does
not account for differences in channel scale (e.g., discharge or width), making it
sensitive to observational resolution. As image resolution increases, Bl may increase
artificially by detecting minor channels that contribute little to the total flow (Tejedor
etal., 2022).
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(e) Entropy-based Braiding Index (eBI) — To address BI limitations, we also use the
entropic braiding index (eBI), introduced by Tejedor et al. (2022), which incorporates
channel heterogeneity using Shannon entropy. Given N channels at a cross-section,
with ¢; denoting the discharge (or width) of channel i and @ = Z@']L ¢; the total
discharge, the Shannon entropy H is computed as:

N
qi q;
H=— = lo () . 2.6
; 0 23 0 (2.6)
The eBl is then defined as:
eBI =21, (2.7)

which can be interpreted as the effective number of channels, that is, the equivalent
number of equally sized channels conveying the same entropy. When all channels
have equal discharge, eBI = BI; when a few channels dominate, eBI < BI,
reflecting the reduced complexity. Additionally, the ratio BI/eBI quantifies the
degree of channel disparity, helping to differentiate braided from anastomosed
systems and assess cross-sectional stability under flow variability.

Together, these metrics provide a comprehensive morphological description of each cluster,
capturing both spatial scale and structural complexity, while the combined use of BI
and eBI ensures a robust, resolution-independent assessment of the multi-thread river
dynamics.

2.7 Probabilistic modeling with Markov chains and Monte Carlo

As previously mentioned, our goal is to model the temporal evolution of our experiment
as a Markov model. To achieve this, the Markov chain framework and Monte Carlo simula-
tions are two fundamental tools used to model and analyze the evolution of morphological
states in the experimental flume. These methods allow for a probabilistic representation of
the system’s dynamics and enable the generation of synthetic series that reflect the natural
variability of sediment transport processes.

2.7.1 Markov Chains

A Markov Chain provides a compact probabilistic framework to model how the system
transitions between discrete morphological states over time. In our context, we assume the
flume can occupy one of n well-defined configurations {51, S, . .., Sy, }, each representing
a characteristic spatial pattern. The key assumption is the Markov property, this is that the
probability of transitioning to the next state depends only on the current state.

Formally, the process is described by a transition probability matrix P, where each entry
P, ; gives the probability of moving from state S; to S; in a single time step. By construction,
the rows of P sum to one:

n
Y Pyj=1 Vi
j=1
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This formulation allows us to model the time evolution of the system as a sequence {X;},
where X; denotes the state at time ¢. The Markov property is then written as:

Pr(Xi1 =85 | Xp = 8, Xi1,...,Xo) = Pr(Xp 1 = 55 | Xp = 55).

Figure 2.9 illustrates a Markov chain with n = 5 morphological states. Each node rep-
resents a state, and each directed edge indicates a permitted transition between states,
labeled with its corresponding probability P; ;. The absence of an arrow implies that a
transition is not allowed (i.e., P; ; = 0).

Figure 2.9: Five-state Markov Chain derived from flume data. Arrows indicate allowed
transitions, and labels show the associated probabilities P; ;.

For example, from state S3, the system can only move to states S, and S4, with respective
probabilities P; 5 and P; 4. These allowed transitions define the structure of the system’s
evolution.

Once our state space has been discretized through clustering, the transition matrix P is
built by counting the number of observed transitions between states. Specifically, for each
pair (7, j), the raw count C; ; records how often the system moved from S; to S;. The final

transition probabilities are then obtained by row-normalizing the count matrix:

C.:

'Pimj = o :
> Cig

This matrix summarizes the observed transition dynamics and serves as the core structure
for generating synthetic sequences using Monte Carlo simulations in the next stage of our
modeling framework.
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2.7.2 Continuous-Time Dynamics: CTMC

The discrete-time Markov chain inSection 2.7.1 captures which state-to-state moves are
possible and with what probabilities at the sampling grid. In the experiment, however,
dwell times within each state are not fixed. Empirically they vary and are well approxi-
mated by an exponential distribution at the state level. To represent this, we model the
evolution as a continuous-time Markov chain (CTMC) defined by a jump kernel without
self-transitions and by state-dependent exit rates.

Let the system occupy one of n states {51, ..., 5, } and let X (¢) denote the state at time ¢.
When the process is in state S; it remains there for a random holding time 7; that follows
an exponential distribution with rate \; > 0. At the end of the holding time, the process
jumps to a new state .S; with probability p;; for j # 4. The pair ();, p;;) fully specifies the
CTMC.

Generator matrix The CTMC is described by the generator Q = [g;;| with
qij = Nipij (1 #£J), Qii = — iy sz‘j =1,
J#i

so that each row of Q sums to zero. The discrete-time transition matrix P = [p;;] is the
jump kernel of the embedded chain and has zero diagonal.

2.7.2.1 Estimation from observed trajectories

Let C;; be the number of observed transitions from S; to S; with j # 7. Let N; = i Cij
be the total number of exits from ;. Let T; be the total time spent in S; across the record.
The maximum-likelihood estimates are

~ N N Cii .. R N N
Ai = f'l’ Pij = F: (J #1), Gij = AiDijs Qi = —Ai-

Units follow the time base used to compute 7;. If some N; = 0, we either merge S;
with its nearest state in the clustering space or apply a small ridge to the counts before
normalizing.

2.7.2.2 Simulation of CTMC paths

To draw a synthetic path:

1. Set the initial state X (0) from a chosen distribution (empirical occupancy or station-
ary distribution).

2. At state S;, sample a holding time 7 ~ Exp(Xi).
3. Draw the next state S; with probability p;; for j # i, set X (t + 7) = S}, and iterate.

When a regular output grid is needed, we hold the last state constant between jump times
and report the state at the grid instants.

39



Chapter 2 Materials and Methods

2.7.2.3 Stationary distribution

If the chain is irreducible, the stationary distribution 7 solves
n
TQ=0", domi=1, m=>0.
i=1

We compute 7 either from Q or from the embedded chain with state-dependent residence
times.

2.7.2.4 Mean first-passage time (MFPT)

Let m;; be the expected time to hit state .S; for the first time starting from S; with ¢ # j.
Collect these values in the vector m) = (my;,...,my;)T. The MFPT satisfies the linear
system

n
Z Qik MEy = —1 forq 75 j, m;; = 0.
k=1

Equivalently, removing row and column j from Q gives Q_; _; m(_]]) = —1. For a target

set A C {1,...,n}, set my; = 0 for all a € A and solve on the complement.

2.7.2.5 Jump entropy rate

We summarize dynamical uncertainty with the jump entropy rate

n
Hrate = »_mi A H(pi), H(pi) = — Y pij logpij,
i=1 i

expressed in nats per unit time when the natural logarithm is used. The factor \; weights
how often departures occur from S;, while H(p;) measures the unpredictability of the
destination conditional on leaving S;. We estimate H, by using &, A;, and p;.

2.7.3 Bootstrap Method

The bootstrap is a resampling technique used to estimate the uncertainty in a statistic
by drawing repeated samples from the observed data. In our context, it is employed to
account for intra-state variability in sediment transport while preserving the transition
dynamics imposed by the Markov Chain.

Let {q1,q2,-..,qm} be the set of observed sediment transport values associated with a
given morphological state S;. A single bootstrap replicate consists of sampling m values
from this set with replacement and computing the desired statistic for that time step.
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The procedure to generate a synthetic transport series for a given simulated state sequence
is as follows:

1. For each time step t, identify the current morphological state S; = X;.

2. Draw a bootstrap sample from the empirical transport values corresponding to state
Si.

3. Assign the resulting value as the transport rate Q,(t) for that time step.

This process is repeated for every time step in the sequence, and the entire operation
is applied across multiple bootstrap replicates. Specifically, for each state sequence, we
generate Npoot = 1000 synthetic realizations of Q;(t), capturing the range of possible
sediment transport trajectories consistent with the observed intra-state variability.

By combining these resampled values with the state transitions generated from the Markov
model, the bootstrap method ensures that both inter-state dynamics and intra-state trans-
port variability are reflected in the synthetic trajectories. This step provides the foundation
for generating a comprehensive ensemble of sediment transport scenarios that will later
be evaluated and filtered using Bayesian criteria.

2.7.4 Monte Carlo Simulations

Monte Carlo simulations are used to generate synthetic realizations of the system’s tempo-
ral evolution by coupling a continuous-time Markov chain (CTMC) for state sequencing
with bootstrap—generated transport rates. Each simulation produces a possible morpho-
logical and transport trajectory, enabling the exploration of variability and uncertainty in
sediment dynamics.

Given the empirically estimated transition probability matrix P from Section 2.7.1, we
draw state sequences in continuous time by sampling exponential dwell times and then
jumping according to P. Specifically, each trajectory starts from a random initial state
(unless otherwise specified). We draw one rate A per trajectory from a prescribed range
and, at the current state, sample a holding time 7 ~ Exp(\). To align with the 1-minute
sampling used throughout the study, 7 is rounded to the nearest minute and the state is
held for that many steps before drawing the next state from the corresponding row of P.
This gives a 1 min step sequence {X;} that built by using dwell times from a distribution
and reconfiguration through P.

To assign transport values to each simulated sequence, we apply the bootstrap method
described in Section 2.7.3. For every minute ¢, we draw Qs(¢) with replacement from the
empirical bag of sediment-transport observations associated with the active state X;. This
produces a synthetic time series that preserves both inter—state contrasts (differences in
state means) and intra—state variability (within-state scatter).

By repeating this process across a large number of simulations, we construct an ensemble
of synthetic trajectories. In this study, we generate Ny, = 100000 Markov state sequences,
each spawning Ny,ot = 1000 transport replicates, for a total of 108 synthetic time se-
ries. Not all simulations are equally realistic; the next section describes an Approximate
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Bayesian Computation (ABC) screening that evaluates each realization using moment
tolerances and image-based similarity metrics, retaining only those that most closely
resemble the original experimental data.

2.7.5 Bayesian Inference

Bayesian inference updates a prior distribution with new information contained in ob-
served data. The updating rule is Bayes’ theorem

P(D | H) P(H)

PUT| D) = == pp

where H is a hypothesis about the system, D is the data, P(H ) is the prior belief, P(D | H)
is the likelihood of observing D if H is true, and P(H | D) is the posterior belief after
seeing the data.

In this work the hypothesis space is the set of all synthetic sediment-transport time series
that can be produced by the Markov model.

1. Prior. A total of Nsq = 100000 state sequences are simulated from the empirical
transition structure. Each sequence spawns Ny,,ot = 1000 bootstrap replicas of the
transport rate Q(t), yielding 10® prior trajectories.

2. Likelihood (ABC filter). A trajectory is accepted if its mean and variance satisfy
’M* - :UJexp‘ < Eus ‘0—2* - ngp‘ < e,

with fixed tolerances ¢, and ¢, set from the experimental record. These tolerances
are kept constant across all comparisons and sensitivity checks.

3. Posterior. The accepted subset is treated as the posterior ensemble and is used for
all downstream analyses. The acceptance rate is reported alongside results and
sensitivity analyses.

2.7.6 Decision-tree surrogate as a conservative prefilter

We use a shallow decision tree to screen synthetic state sequences using image-only
information before any costly transport computation. The target of the classifier is whether
a sequence would match the first two moments of the experimental transport record. For
each candidate sequence A drawn from the prior (Section 2.7.5), we compute the expected
transport mean i(A) and variance 62(A) implied by its state visits and transitions (using
the calibrated state-wise summaries). We then compare these values with the experimental
moments fiexp and agxp and assign a binary label,

y(A) = 1{ |(4) = ptexp

<¢,and ‘&Q(A) — o2

exp

SEO'}a

where ¢, and ¢, are the predefined tolerances (absolute or relative, as reported). Only
sequences whose expected mean and variance are within tolerance are labeled y = 1. This
produces an imbalanced dataset with rare positives.
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Each sequence is described by six inexpensive, image-only descriptors computed against
the experimental reference: state-frequency difference df.q, Frobenius distance between
transition matrices dy, Jensen-Shannon divergence of pooled dwell times d$¢!!, diagonal
distance dga for self-transitions, length-normalized Levenshtein distance dj., between
state strings, and average-row-entropy difference dcn,. We standardize all features with
training-set mean and variance and use a small ridge in transition counts to avoid unde-
fined entropies or divergences.

The classifier is a depth-3 decision tree with Gini impurity, class weights to counter
imbalance, and a minimum number of samples per leaf to prevent overfitting. We split the
data in a stratified way, tune hyperparameters by cross-validation to maximize precision
subject to a recall floor, and optionally calibrate the tree’s probabilities on the validation
set. An operating threshold 7 on the predicted probability p(x) is chosen so that precision
is at least 0.99; this enforces conservative behavior. In deployment, only sequences with
p(x) > 7 pass to full transport assignment and ABC; the rest are discarded early.

Beyond filtering, the tree also reveals which descriptors, or combinations of them, best
predict acceptable moments. We report feature importances and the learned split rules,
which indicate the metrics that most strongly separate sequences that achieve mean and
variance within tolerance. This analysis identifies the most informative descriptors for
forecasting moment-level acceptance using only state-sequence information.

2.7.7 Cross-experiment comparison of transition matrices

We compare the transition structure across experiments by measuring the distance between
their discrete-time transition matrices. Let P(Y) € R"*" and P(¥) € R™ " be the row-
stochastic matrices estimated for experiments A and B (rows sum to one). The baseline
discrepancy is the Frobenius norm

dp(A,B) = HP<A>_P<B>H _

F (0P’

1j=1

n
1=

Estimation protocol

For each experiment we estimate P from transition counts C;; as in Section 2.7.1, add a
small ridge to zero rows if needed, and row-normalize. We then align states (if required)
and compute dr and the diagnostics above. For multiple experiments we assemble a
pairwise distance matrix and summarize with medians and interquartile ranges.

2.7.8 Temporal Diagnostics: Autocorrelation and Power Spectrum

We use two standard diagnostics to compare the temporal structure of experimental and
synthetic time series: the autocorrelation function (ACF) in the time domain and the power
spectral density (PSD) in the frequency domain. Both are computed on the de-meaned
series and on a uniform time grid.
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Autocorrelation function (ACF)

Let {Q;}!_, be the sediment-transport series sampled every At. Denote Q = 7 S0
The sample ACF at lag k (with k € {0,1,...,L})is

HQe- Q) (erkz - Q).
S (Q — Q)2

We report p(k) over a fixed lag range and use the integrated autocorrelation

pk) =

IACF(L) = 142> p(k),

as a scalar summary of persistence. For visual comparison we plot the empirical p(k); for
quantitative comparison we compute a weighted L? distance between curves over the
chosen lag range.

Power spectral density (PSD)

The PSD quantifies how the variance of a stationary series is distributed over temporal
frequencies. For an evenly sampled record with sampling interval At (1 min in our case),
the one-sided PSD S( f) integrates to the sample variance,

fn
Var(z) = /O S(f) df.

where fn = 1/(2At) is the Nyquist frequency. We estimate S(f) with Welch’s method,
which averages periodograms from overlapping, windowed segments to reduce variance.
The series is demeaned and linearly detrended, split into segments of length L with
50% overlap, and weighted with a Hann window w. For each segment we compute the
discrete Fourier transform, form the window-corrected periodogram, then average across
segments. The estimate is converted to a one-sided spectrum by doubling power for
positive frequencies (excluding f = 0 and fy). The resulting units are (series units)?/Hz.

2.7.9 Extreme-Value Validation: Return-Period Curves

This subsection evaluates whether synthetic series reproduce the tail behavior of the
experimental transport. We use return-period curves built from peaks-over-threshold
events.

Let {Q:}{_, be the transport series sampled every At. We detect extreme events using a
peaks-over-threshold (POT) scheme with declustering:
1. Choose a high threshold « (e.g., the empirical ¢g-quantile with ¢ € [0.95,0.995]).

2. Identify all indices with @; > u. Consecutive exceedances within a run length 7.,
are grouped into one cluster.

3. For each cluster, keep the local maximum Q} and its time stamp. The set {Q}}2*,
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are the POT event magnitudes.

For a grid of levels x > u, define N, as the number of POT events with Q; > z. With
total observation time Ti,,s = 1" At, the empirical return period at level x is

~ T
T(x) — obs

with units of time. Equivalently, if working on the regular grid without declustering, the
exceedance probability is p(z) = N-,/T and T(z) = At/p(x). For uncertainty bands,
we treat N, as Poisson with rate v(z) = N~,/Tons and report exact Poisson confidence
intervals, mapped to T'(z) = 1/v(z).

2.7.10 Variance decomposition and the fraction explained by state switching

We decompose the variability of the transport series ); into a within-state component
and a between-state component using the law of total variance. Let S; € {1,...,n} be the
morphological state at time ¢. Define

i = E[Qt ‘ St = 2}, 022 = Var(Qt | St = Z), T, = PI’(St = ’L)

The total variance satisfies

Var(Q) = E[Var(Qt | St)} —|—Var(IE[Qt | St]) = zn:maiz + zn:m (i — i),
i=1 i=1

w B

where 1 = >°7; mipi. We report the fraction of variance explained by state switching as

Estimators from a single time series

Let the record be sampled on a regular grid with step At. Denote by 7; = {t : S; = i}
the index set of time steps spent in state i, with size N; = |7;| and occupancy weight
7i = Ni/ i Ni. The statewise sample moments are

ﬁz‘:ﬁZQn ;= ! D (Qi—m)* (Ni>2).

v teT; teT;

and the fraction explained is pp = B/ (W + B). For runs with missing values or irregular
sampling, replace NN; by the total time spent in state 4, 7;, and use 7; = T;/ >, T}
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Sensitivity to the number of states

To assess robustness with respect to state granularity, we recompute pp across a grid of
cluster counts n. For each n, we estimate 7, ji;, 3? and summarize pp(n). We report trends
and plateaus rather than a single value when changes in n lead to material differences.
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3 | Braided Rivers Morphology as
Markov Chains

Building on the methodological overview in section 2.1, this chapter implements the
Markov modeling of braided-river planform using the experimental record. Our aim is to
define a discrete, data—driven set of morphological states and to quantify how the system
moves between them. The workflow follows the first three green boxes in Figure 2.1: image
acquisition & processing, pattern analysis & state definition, and transition probability
estimation. The remaining steps, namely Monte Carlo simulations and model validation,
are addressed in the next chapter.

The analysis begins by deriving a measure of dissimilarity between time-ordered planform
configurations, using complementary image—based metrics to capture different aspects
of morphological change. These distances are then projected into a lower—dimensional
space using non-linear reprojection techniques, followed by unsupervised clustering to
identify recurrent patterns. The resulting groups are taken as the states of the Markov
model, and are compared in terms of their morphology and sediment transport signatures
to aid interpretation.

Finally, the temporal sequence of states is used to estimate the transition structure, includ-
ing the discrete-time transition probability matrix and measures of state persistence. Each
subsection concludes with a brief summary of its main findings and their relevance to the
objectives stated in the Introduction.
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3.1 Distance Matrix

To quantify the morphological dissimilarity between every pair of images in the exper-
iment, we computed two complementary metrics: the Modified Hausdorff Distance
(MHD), described in Section 2.4.1, and the Dice coefficient-based distance, detailed in
Section 2.4.2. Each metric captures a different aspect of morphological change. MHD
emphasizes geometric displacement between contours, while the Dice Index reflects the
degree of areal overlap between wetted areas.

Figures 3.1 and 3.2 show the resulting normalized distance matrices. Figure 3.1 shows
that the color scale ranges from dark purple (low distance, i.e., high geometric similarity)
to bright yellow (large displacement between contours). The dark main diagonal reflects
zero distance between each image and itself. Narrow dark bands parallel to the diago-
nal identify intervals of morphological persistence, while bright zones indicate sudden
geometric rearrangements.

Figure 3.2 shows the normalized values range from dark purple (low similarity, i.e., poor
overlap) to bright yellow (high Dice similarity). The diagonal is bright by construction. Off-
diagonal bright blocks highlight periods where the wetted area remains largely unchanged,
even across distant time steps, suggesting morphological stagnation in terms of wet surface
extent.
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Figure 3.1: Normalized Modified Hausdorff Distance (MHD) matrix. Brighter colors
represent larger geometric distances. Light diagonal bands indicate persistent morphology,
whereas bright patches mark significant geometric change.

48



Braided Rivers Morphology as Markov Chains Chapter 3

-10

6000

12000

18000

24000

& 8
S 5]
3 S
8 8

Image index

8
g
g

48000

54000

60000

66000

72000

L
o
S
&
IN

o
53
S
8

Image index

6000
12000
18000
24000
30000
42000
48000
54000
60000
66000

Figure 3.2: Normalized Dice-based distance matrix. Bright colors indicate high similarity
in wetted areas. Bright off-diagonal blocks suggest consistent wet regions across distant
time steps.

Although the two matrices appear broadly similar and both highlight intervals of persis-
tence and transitions, they capture different morphological information. The Modified
Hausdorff Distance (MHD) is particularly sensitive to contour displacement and geo-
metric misalignment, whereas the Dice-based distance responds more directly to the
spatial overlap of wetted regions (Karimi & Salcudean, 2020; Taha & Hanbury, 2015). This
distinction means that evaluating with a single metric can leave blind spots: time steps
that preserve overlap but shift the channel laterally yield low Dice penalties yet large
MHD values, while local widening or narrowing can substantially affect Dice with only
modest changes in MHD.

Concrete examples from our experiment illustrate this complementarity. A lateral migra-
tion of the channel increases MHD because contours are displaced, while also lowering
Dice as the overlap between wetted regions decreases, even if total area changes little.
Conversely, a localized expansion or contraction of the channel can substantially alter the
Dice score without producing large geometric shifts of the contours, as long as the channel
centerline remains fixed.
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Because each metric emphasizes different aspects of change (i.e., shape deformation and
structural rearrangement for MHD); areal continuity or fragmentation for Dice), their joint
use is informative rather than redundant. In fact, in machine learning it is common to
combine partially correlated “views” to improve robustness and stabilize downstream
structure; multi-view learning shows that fusing complementary (and even mildly redun-
dant) descriptors often enhances stability and generalization (Li et al., 2016; Xu et al., 2013).
In the same spirit, keeping both distances reduces the risk of missing either boundary-
dominated or overlap-dominated transitions, and leads to more reliable patterns in our
dimensionality-reduction and clustering analyses.

Figure 3.3 provides a visual instance of this complementarity. The left panel depicts a
slightly more laterally expanded, multi-thread morphology, whereas the right panel shows
a narrower, single-thread channel. The wetted areas occupy opposite sides of the domain,
yielding minimal overlap and clear contour misalignment. Consistently, both MHD and
Dice flag this pair as the most dissimilar images, underscoring how their combination
captures displacement-dominated and overlap-dominated contrasts in tandem.

Figure 3.3: Most dissimilar morphologies across the experiment according to both MHD
and Dice. The left panel shows a slightly more laterally expanded, multi-thread pattern;
the right panel shows a narrower, single-thread channel.

Taken together, the MHD and Dice distance matrices expose both periods of persistence
and episodes of rapid reorganization, and they do so by emphasizing complementary
aspects of change. We therefore combine these two signals into a single composite dissimi-
larity that balances contour shifts with wetted-area changes. This composite will serve as
the input for the dimensionality-reduction stage and, later, for clustering into recurrent
configurations that define the state space used by the Markov model.
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3.2 Dimensionality Reduction

Now that we have both distance matrices, we assemble a single feature matrix by horizon-
tally concatenating the normalized MHD and Dice matrices. Each column encodes the
distance of all images to one reference image, so columns are the features. With n images,
this yields an n x 2n matrix X = [Xyup | Xpicg]. Before projection, we standardize
features to place MHD- and Dice-derived columns on comparable scales.

Applying non-linear embeddings (UMAP, t-SNE) or even classical MDS directly to the
2n-feature space was computationally heavy and produced unstable layouts, a typical
symptom of the “curse of dimensionality,” where distances lose contrast and redundant
features accumulate (Kdppen, 2000). To mitigate this, we use Principal Component Analy-
sis (PCA) as a preprocessing step to compress variance into a smaller set of components,
reducing noise and redundancy and yielding more stable, interpretable downstream
embeddings.

3.2.1 Principal Component Analysis (PCA)

PCA was performed after column-wise standardisation of the composite matrix (zero
mean, unit variance). The cumulative explained-variance curve (Figure 3.4) shows a steep
rise that flattens quickly: the first 67 principal components already capture 99% of the
total variance, a dramatic reduction from the original ~ 144000 features. Retaining only
these 67 components thus preserves nearly all information while reducing dimensionality
by more than four orders of magnitude, greatly accelerating the following stages of the
process.

Because the mathematical foundations and numerical implementation of PCA were de-
tailed earlier (Section 2.5.2), we limit the discussion here to the outcome:

* Number of retained components: £ = 67 (99% cumulative variance).

e Transformation matrix W € R?"*¥ used to project the composite feature matrix into
a k-dimensional space.

* Projected data matrix Xpca € R™ ¥, which serves as input for the non-linear projec-
tions analyzed in Section 3.2.2.

In summary, retaining £ = 67 components preserves 99% of the variance while com-
pressing the feature space from about 1.44 x 10° features to 67, which mitigates distance
degeneracy, stabilizes following non-linear projections, and reduces computation. We
therefore carry forward the PCA scores as standardized inputs for the next subsection,
where we compare MDS, t-SNE, and UMAP across broad parameter sweeps to select the
projection that best supports subsequent clustering into states.
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Figure 3.4: Cumulative explained variance of the principal components computed from
the normalized composite distance matrix. The dashed line marks the 99 % threshold,
reached at component 67.

3.2.2 Non-linear Dimensionality Reduction

While PCA efficiently reduces noise and dimensionality by retaining the most informative
linear components, it is inherently limited to capturing linear relationships. In our dataset,
however, morphological transitions are expected to involve complex, non-linear patterns
that may not be adequately preserved through PCA alone. To uncover this latent structure
and improve the separability of configurations, we complemented the linear reduction
with three non-linear projection techniques.

We used the k = 67 PCA scores obtained in the previous subsection as input for:

(i) Metric Multidimensional Scaling (MDS),
(ii) t-Stochastic Neighbor Embedding (+-SNE), and
(iii) Uniform Manifold Approximation and Projection (UMAP).

These three approaches were chosen deliberately rather than defaulting to a single “best”
method. Although t-SNE and UMAP are often favored for non-linear embeddings, their
performance is highly sensitive to parameter settings and dataset characteristics. Without
direct comparison, it is difficult to determine a priori which method will best balance local
neighborhood preservation, global geometry retention, and computational efficiency for a
given problem. MDS, while older and less specialized for high-dimensional visualization,
serves as a valuable baseline as it preserves global pairwise distances and offers a different
bias-variance profile compared to manifold-learning methods.
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Table 3.1: Explored parameter values for non-linear dimensionality reduction methods.

Method Parameter Values

MDS n_components 2,3

MDS dissimilarity precomputed

t-SNE perplexity 30, 50, 100, 150, 200, 250, 300
t-SNE learning rate 100, 200, 500, 1000, 2000
t-SNE early exaggeration 12,24,36

t-SNE n_components 2,3

UMAP n_neighbors 50, 100, 150, 250, 300, 500
UMAP min_dist 0.0,0.1,0.2,0.3,0.5,0.75
UMAP n_components 2,3

By including all three, we ensured a fair and systematic evaluation across complementary
algorithmic principles: distance-preserving (MDS), stochastic neighbor-based (t-SNE),
and manifold approximation (UMAP). This comparative approach reduces the risk of
restricting our analysis to a single algorithm, increases the robustness of the final method
choice, and provides a clearer understanding of how different projection biases affect
clustering.

To evaluate their performance, we generated multiple embeddings in both two and three
dimensions, systematically varying key parameters known to influence projection quality.
Figures 3.5-3.7 show one representative 2D embedding for each method, and the full
parameter grid is summarized in Table 3.1.

MDS effectively preserves global pairwise distances but is known to be sensitive to local
minima and scales quadratically with sample size (Agarwal et al., 2007; Demaine et al.,
2021). In our runs, the resulting projections often formed broad, curved manifolds with
dense clusters interspersed with sparser regions (Figure 3.5). This structure suggests that
while global relationships were largely maintained, local distortions in the input space
may have introduced curvature and uneven density in the low-dimensional embedding,
potentially affecting downstream density-based clustering.

t-SNE produced a scattered arrangement of small, elongated point clusters rather than well-
separated compact “islands” (Figure 3.6). Many points formed short chain-like structures
or arcs, with colors (normalized index) smoothly varying within clusters but transitioning
sharply between others. While local neighborhoods were preserved, the irregular shapes
and fragmented distribution highlight the method’s sensitivity to parameter tuning and
its limited preservation of global geometry (van der Maaten & Hinton, 2008). Also,
computational cost remained substantial at higher perplexities.
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Figure 3.5: Example 2-D metric MDS embedding applied to our dataset. Each point
represents one image; colour encodes the normalised time index (earliest = purple, latest
= yellow). Note the elongated filaments and sparse central region, typical of the stress

landscape for large data sets.
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Figure 3.6: Representative 2-D t-SNE embedding applied to our dataset. Compact local
islands are evident, but the global arrangement is sensitive to parameter changes, reducing

geometric interpretability.
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UMAP produced a sparse arrangement of small, often elongated clusters, with clear
separation between many groups but also visible fragmentation into short chain-like
structures (Figure 3.7). While points with similar normalized index values tended to
cluster together, their shapes were irregular rather than compact. The n_neighbors
parameter remained critical for balancing local continuity with global separation, and
min_dist strongly influenced the observed elongation of clusters. Consistent with prior
reports (Mclnnes et al., 2020), UMAP maintained high computational efficiency, scaling
nearly linearly with dataset size and running substantially faster than ¢-SNE.
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Figure 3.7: Representative 2-D UMAP embedding. Morphologically similar images cluster
tightly, while dissimilar configurations are well separated—properties that favor density-
based clustering and subsequent Markov-state definition.

Method selection

To identify the most suitable projection method, we generated a broad set of candidate
embeddings by systematically varying the parameter combinations described above
for MDS, t-SNE, and UMAP. Each embedding was assessed using two complementary
approaches: (i) quantitative scoring with the Silhouette, Davies-Bouldin, and Calinski-
Harabasz indices, and (ii) qualitative visual inspection. In addition, exploratory clusterings
were performed with DBSCAN and HDBSCAN to evaluate how well each embedding
supported meaningful and stable partitions. These same metrics will later be applied in
the clustering analysis.
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The evaluation yielded the following conclusions:

¢ UMAP consistently outperformed the alternatives, producing compact, well-separated
clusters with structure that was coherent across both visual and quantitative assess-
ments.

* MDS preserved global pairwise distances but frequently introduced local distortions,
stretching clusters into elongated forms that hindered density-based clustering.

* t-SNE captured fine-grained local neighborhoods and yielded visually appealing
groups, but the global arrangement was highly sensitive to parameter changes.

In addition, UMAP achieved these results at a fraction of t-SNE’s computational cost,
scaling efficiently with dataset size while maintaining a favorable balance between local
detail and global structure.

This outcome underscores a well-known challenge in non-linear dimensionality reduction
which is that optimal parameter settings are rarely known a priori, and performance can
vary dramatically across configurations (Y. Wang et al., 2021). Reliable method selection
therefore requires systematic exploration of the parameter space, which is computationally
demanding but necessary to avoid bias toward a single algorithm. Moreover, clustering
quality metrics, while useful, are insufficient on their own; they must be complemented
with human inspection to detect distortions, fragmentation, or artifacts invisible to nu-
merical scores (Machado et al., 2025). In our case, both quantitative metrics and visual
evidence converged on the same conclusion: UMAP offered the best compromise be-
tween interpretability, stability, and efficiency, making it the best choice for subsequent
clustering and state definition.
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3.3 Clustering

Choosing between DBSCAN (Ester et al., 1996) and its hierarchical variant HDBSCAN
(Campello et al., 2013) is not obvious a priori either. Both depend strongly on their
hyperparameters and on the geometry of the input embedding. As in Section 3.2.2, we
therefore adopted a comparative approach: for each UMAP embedding produced in the
previous section we ran both algorithms over broad hyperparameter grids (Tables 3.1 and
3.2) and evaluated every run with the clustering metrics defined in Section 2.6.3.

Table 3.2: Explored hyperparameter values for DBSCAN and HDBSCAN.

Algorithm  Parameter Values

eps 0.10, 0.15, 0.20, 0.25, 0.30, 2.0
DBSCAN min_samples 10, 25, 50, 75, 100, 150, 200
HDBSCAN [in-cluster_size 50, 100, 150, 250, 350, 400, 500, 800

min_samples 15, 25, 50, 75, 100, 150, 250

Each clustering trial was logged with its parameter settings and scored with the quality
indices listed in Table 3.3.

Table 3.3: Recorded parameters and quality metrics for every clustering run.

Column Meaning / desirable trend
UMAP_n_neighbors Local-global trade-off

UMAP_min_dist Packing density; smaller — tighter local groups
UMAP_n_components 2 or 3 dimensions in this study

DBSCAN_eps Radius defining core points (¢)
DBSCAN_min_samples Minimum points in an e-ball
HDBSCAN_min_cluster_size Minimum cluster size; larger — broader clusters
HDBSCAN_min_samples Density definition for core points
Num_Clusters Clusters found (excluding noise)
Noise_Percentage Points labelled -1; target < 20 %
Silhouette_Score Higher 1 = tighter, well-separated clusters
Davies_Bouldin_Index Lower | = better separation

Calinski_Harabasz_Index Higher 1 = dense, isolated clusters

For clarity we illustrate one representative UMAP 2D embedding and vary clustering
parameters across six panels in Figure 3.8. Noise points are hidden (assigned zero alpha)
to emphasize how clusters change with the hyperparameters; shaded hulls outline each
cluster.
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Figure 3.8: Effect of clustering hyperparameters on the same 2D UMAP em-
bedding. Left column (a,c,e): DBSCAN with (¢,min_samples) = (2.0,20),
(2.0,200), and (0.2,20), respectively. Right column (b,d,f): HDBSCAN with
(min_cluster_size,min_samples) = (40,150), (400,150), and (40, 15), respectively.
Points labelled as noise are not displayed for readability; colored convex hulls wrap the
clusters. In DBSCAN, a large € merges distant shapes (a); tightening the core definition
with a very high min_samples removes sparse filaments as noise (c); a very small ¢
fragments structures into many small pieces (e). HDBSCAN adapts to local density: in-
creasing min_cluster_size coarsens groups (d), while smaller min_cluster_size
or min_samples accepts fine-grained but stable clusters without over-merging (b,f).
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The comparison shows the core limitation of flat-density clustering for this dataset. With a
single global ¢, DBSCAN forces a trade-off in which generous radii over-merge elongated
and compact shapes into heterogeneous aggregates (panel a). Strict core requirements
remove most low-density branches as noise (panel c). Tight radii split coherent structures
(panel e). In contrast, HDBSCAN builds a density hierarchy and keeps clusters that are
stable across scales. Small structures are retained when they persist (panel b,f) and larger
min_cluster_size values produce coarser but still morphologically coherent groups
(panel d).

To move beyond visual assessment, we screened every configuration with Silhouette,
Davies—Bouldin, Calinski-Harabasz, and the noise fraction. Good solutions must bal-
ance separation and coverage; excellent scores that arise from over-fragmentation (many
tiny clusters) or from over-merging (few oversized clusters) were rejected. This joint
visual-numerical procedure consistently favored HDBSCAN over DBSCAN for our
UMAP embeddings, leading to the final configuration reported in Table 3.4.

Table 3.4: Selected parameters for UMAP embedding and HDBSCAN clustering.

Algorithm  Parameter Value
UMAP n_neighbors 300
UMAP min_dist 0.0
UMAP n_components 3
HDBSCAN min_cluster_size 500
HDBSCAN min_samples 250

Applied to the 3D UMAP projection, this setting yields 16 well-separated clusters while
keeping the percentage of discarded points below 10% (Table 3.5); the arrangement is
shown in Figure 3.9.

Table 3.5: Clustering performance metrics for the selected configuration.

Metric Value
Number of clusters 16
Noise points 9.93%
Silhouette score 0.55

Davies—-Bouldin index 0.52
Calinski-Harabasz score 20479
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Figure 3.9: Three-dimensional UMAP embedding colored by the 16 clusters returned by
the selected HDBSCAN configuration. Two viewpoints are shown to convey the spatial
arrangement of clusters in 3-D space. An interactive version is available online.
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3.3.1 Characterization of Clusters

The goal of this section is to translate the purely data—driven clusters obtained with the
UMAP + HDBSCAN workflow into physically interpretable river states. We proceed
in two complementary steps. First, Section 3.3.1.1 documents the planform morphology
captured by each cluster, combining a visual inspection of cluster medoids with five
quantitative descriptors that are standard in braided rivers-geomorphological analyses.
Second, Section 3.3.1.2 examines the sediment-transport signatures that were recorded
synchronously with the imagery at one-minute resolution. Analyzing both morphody-
namics and transport rates allows us not only to assess how distinct the clusters are in
each domain but also to probe potential causal links between channel configuration and
sediment flux.

3.3.1.1 Morphological Description

Figure 3.10 presents the binary medoid of every cluster, i.e., the image closest to the cluster
centroid in the three-dimensional UMAP space of Figure 3.9. A rapid visual scan suggests
a clear spectrum of planform configurations. Comparatively simple, single-thread states
(Clusters 00 to 03, top row) transition into moderately sinuous and incipiently braided
patterns (Clusters 04 to 08), and finally into fully developed multi-thread braids with
large exposed bars and island complexes (Clusters 09 to 15, bottom rows). This qualitative
progression is consistent with the classical channel-pattern spectrum, which ranges from
single-thread to braided, as documented in fluvial geomorphology and associated with
increasing lateral occupation and bar activity (Eaton et al., 2010; Leopold & Wolman, 1957;
Surian, 2015).

Two additional, recurrent planform tendencies stand out. First, many clusters, especially
at low to mid indices, show a persistent lateral bias in thread occupancy toward the left
half of the flume. The thalweg hugs the left bank while emergent bars or partially wetted
benches occupy the opposite margin. As braiding intensifies, the channel belt re-centers
and discharge is redistributed more evenly across the corridor. This behavior is consistent
with observations that thread motion can be coherent over long intervals and that channel
belts widen and reorganize as braiding develops (Li & Limaye, 2025; Limaye, 2020).

Second, overall curvature increases alongside braiding intensity. Single-thread clusters
display near-straight to gently curved thalwegs, whereas braided clusters exhibit pro-
nounced alternating bends, frequent curvature reversals, and junction angles approaching
orthogonality. These signatures are diagnostic of chute cut-offs and mid-channel bar
driven avulsions, and are widely reported in experimental and field studies of multithread
rivers (Micheli & Larsen, 2010; Nicholas et al., 2018).

Together with the widening of the active corridor and the richer texture of water-bar
interfaces toward the higher-index clusters, these features depict a coherent increase in
morphological diversity. The numeric labels (00 to 15) are therefore best read as identifiers
of distinct states along a single- to multi-thread continuum rather than as an ordinal
ranking of complexity.
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Cluster 00 Cluster 01 Cluster 02 Cluster 03

Cluster 07

Cluster 10 Cluster 11

Cluster 12

Figure 3.10: Binarized centroids of the 16 clusters (Cluster 00-15) obtained from the joint
analysis of MHD and DICE distances. The 4 x 4 layout illustrates the morphological
progression of channel states: the first clusters (00-03) exhibit relatively straight, single-
threaded channels with limited lateral occupation; intermediate clusters (04-08) show
increased sinuosity and the emergence of secondary threads; while the final clusters
(09-15) display highly braided configurations, with multiple branches, exposed bars, and
greater spatial complexity. These differences highlight the range of flow patterns and
the gradual transition from simple to complex morphodynamics within the experimental
river system.
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Beyond this qualitative overview, each cluster was summarized by five planform metrics
(see Section 2.6.4 for formal definitions) and by :

(a) Wetted width — mean cross-stream distance between wetted banks;

(b) Wetted area — total area of the water mask;

(c) Sinuosity — centerline length divided by straight-line valley length;

(d) Braiding Index (BI) — count of independent wetted threads;

(e) Entropy-based Braiding Index (eBI) — Shannon entropy of thread occupancy, which

down-weights ephemeral or minor channels.

The number of images per cluster is uneven (Table 3.6). Counts range from 1,954 (Clus-
ter 00) to 13,729 (Cluster 11), with a median of ~ 3,449. Nearly half of all images (~ 47%)
fall in Clusters 09-12, whereas six clusters contain fewer than 3,000 images each. This
imbalance already hints at unequal state occupancies that we later quantify with the
Markov model.

Table 3.6: Cluster-wise statistics: image count, wetted width (cm), wetted area (m?),
sinuosity, and braiding indices (scaled image counts, rescaled min=19.7 cm)

Image Wetted Width Wetted Area Sinuosity BI eBI Bl/eBI

Cluster  Count ~ (cm) (m?) O 60 6 O

cluster 0 1954 30.92 0.93 11.79 1.77 153 1.11
cluster 1 2108 19.70 0.59 11.90 176 154 1.10
cluster 2 4237 31.30 0.94 26.98 285 236 1.18
cluster 3 3481 41.95 1.26 30.51 3.04 242 121
cluster 4 2290 67.25 2.02 58.51 432 338 130
cluster 5 2978 66.37 1.99 73.31 538 426 1.28
cluster 6 2262 52.41 1.57 34.02 328 266 123
cluster7 4393 34.11 1.02 20.24 232 198 115
cluster 8 3252 70.20 2.11 49.25 371 3.05 120
cluster 9 7212 68.84 2.07 76.83 540 425 1.28
cluster 10 5133 44.84 1.35 28.73 3.07 251 121
cluster 11 13729 64.06 1.92 47.90 392 318 122
cluster 12 7931 48.78 1.46 26.00 289 237 120
cluster 13 4828 68.84 2.07 52.42 437 347 127
cluster 14 3416 58.79 1.76 35.48 362 294 123
cluster 15 2796 50.29 1.51 39.05 373 303 124

The statistics listed in Table 3.6 align with the medoids and quantify the gradient of
planform complexity. Wetted width and area roughly double from low-index clusters
(00-03) to strongly braided clusters (e.g., 09 and 13), indicating lateral expansion of active
flow paths. Sinuosity follows the same trend, reaching its largest values in Clusters 09
and 05, while Clusters 00 and 01 remain close to straight.
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Joint interpretation of BI and eBI. The entropic braiding index interprets the cross
section as a probabilistic splitter. If channel i conveys a fraction p; of the total discharge
(we use width as proxy), the Shannon entropy H = — Y, p; log, p; measures pathway
uncertainty and eBI = 2% is the effective number of channels. Hence eBI equals Bl
only when all threads have equal width, and eBI < BI in every other case. Because
very narrow threads contribute little to H, eBI is markedly more robust than BI to
resolution and stage effects. The ratio BI/eBI quantifies channel-size heterogeneity.
Values near one indicate uniform thread widths. Higher values indicate uneven partition
with dominant and subordinate branches. These properties have been demonstrated
on field transects and controlled numerical experiments, and the ratio helps distinguish
braided from anastomosed patterns as well as interpret cross-section stability under
discharge variability.

In our dataset the smallest values occur in Clusters 00-01 (BI = 1.8, eBI ~ 1.5), consis-
tent with single-thread flow and low heterogeneity (BI/eBI ~ 1.10-1.11). The largest
values occur in Clusters 09 and 05 (BI = 5.40 and 5.38; eBI = 4.25 and 4.26), followed
by Clusters 13 and 04 (BI = 4.37 and 4.32; eBI = 3.47 and 3.38). These groups combine
high channel count with elevated disparity (BI/eBI ~ 1.27-1.30). Most remaining clus-
ters sit at intermediate complexity with moderate disparity (BI/eBI ~ 1.20-1.24). The
range 1.10-1.30 indicates that, even when multiple threads are active, discharge partition
remains far from equal in the more braided states.

Two clusters may share similar B1 yet differ in eBI and therefore in BI/eBI. This occurs
when one state contains many minor chutes while another splits flow more evenly. The
ratio is thus the concise summary of width diversity. Tejedor et al. (2022) showed that
BI/eBI increases when small channels are activated at higher flows, that eBI is less
sensitive than BI to added fine threads under higher image resolution, and that the ratio
separates braided from anastomosed regimes. In our lab series this explains why strongly
braided clusters (04, 05, 09, 13) pair high BI with the highest BI /eBI: many additional
pathways exist, yet most carry a small share of the total wetted width.

Numerical experiments by Tejedor et al. show that cross-section stability depends on
the ratio in a way that varies with the governing processes. Systems with vegetation or
cohesive sediment tend to form stable sections with more even widths and higher e BJ
relative to BI. In sand-only braided runs, such as in our case, stability can occur with larger
disparities and lower eB1 relative to BI. Our facility uses non-cohesive sediment and no
vegetation, so intervals dominated by high BI /e BI clusters likely represent configurations
where a few dominant threads persist while minor paths appear and disappear between
reconfigurations. This interpretation is consistent with the sustained high sinuosity and
wetted width observed in the most braided groups.

In summary, our results of the triplet {BI, eBI, BI/eBI} provide a coherent ranking of
clusters from nearly single-thread to wide, bar-rich braids while remaining robust to mask
resolution and short-term stage noise, in line with the properties documented by Tejedor
et al. (2022)
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3.3.1.2 Sediment Transport Description

We now examine how morphology-based states influence bedload transport. Table 3.7
shows the mean and standard deviation of the sediment-transport rate (), for each state,
and Figure 3.11 presents the full distributions. Three main patterns appear in the violin
plots. First, most states have a compact body below 0.2 gs™! and a thin tail that reaches
about 2-2.4 gs~!. These long tails correspond to rare pulses that occur in many states
and therefore do not distinguish one morphology from another. Second, the position of
the median and the interquartile range (IQR) change systematically with planform: states
with narrow, low-BI geometries have higher medians and wider IQRs, while strongly
braided states concentrate near zero with narrow IQRs. Third, variability within a state
is uneven. Some states show high central values with wide spread, while others remain
consistently low and stable.

High-transport states. Clusters 00, 01, 07, and 02 exhibit the highest central tendency
(means and medians), consistent with Table 3.7. In Figure 3.11 their violins are slender
but centered at higher @), with long upper needles. The thin bodies indicate that most
observations cluster around a relatively stable transport level; the needles reflect occasional
bursts to large values. These signatures match hydraulically efficient planforms with small
wetted width and low Bl/eBI (Table 3.6), typical of single-thread configurations that
transmit momentum and sediment with minimal partition losses.

Low-transport states. Clusters 09, 05, 04, and 13 sit at the opposite end. Their violins are
compressed near zero with tight IQRs, and the rare spikes appear only as tall, thin needles
that do not shift the center of the distribution. These states are wide and highly braided
(high BI and eBI), which favors storage and damped bedload export.

Between these extremes are intermediate states such as 03, 10, 11, 12, 14, and 15. They
show middle values for both the median and the IQR, which matches their planforms of
moderate width and braiding. Overall, Figure 3.11 and Table 3.7 reveal a clear trend. As
wetted width, sinuosity, and BI/eBI increase, typical transport decreases and becomes
more stable, while narrow single-thread states carry higher and more variable loads. This
supports the use of morphological state as a condition for transport analysis in the Markov
framework that follows.
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Figure 3.11: Violin plots of sediment transport rate ()5 across the 16 morphological states.
The plot highlights inter-state contrasts in median transport and intra-state variability,
providing a detailed view of how transport dynamics differ between states.

Table 3.7: Cluster-wise mean and standard deviation of the sediment transport rate )5
(gs™!), computed from the time series while each state was active.

Cluster Mean (Q)s) Std. dew.

cluster 0 0.43 0.28
cluster 1 0.37 0.37
cluster 2 0.24 0.24
cluster 3 0.16 0.20
cluster 4 0.07 0.11
cluster 5 0.05 0.12
cluster 6 0.14 0.21
cluster 7 0.27 0.20
cluster 8 0.12 0.17
cluster 9 0.04 0.09
cluster 10 0.20 0.20
cluster 11 0.11 0.16
cluster 12 0.18 0.21
cluster 13 0.07 0.14
cluster 14 0.12 0.18
cluster 15 0.19 0.24
Global 0.155 0.208
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Having established the state-level statistics, we now examine how morphology controls
the mean bedload flux. Figures 3.12 and 3.13 plot the cluster average transport (Qs)
against mean eBl and mean wetted width, with one point per state (n = 16). Both
relations are strongly negative (Pearson r = —0.920, R? = 0.847 for eBL; r = —0.959,
R? = 0.919 for wetted width) and the confidence bands remain narrow across the range.
The trend is straightforward. States that are wider and more braided export less sediment
on average. A unit increase in eBI corresponds to a drop in (Q) of about 107! gs™!.
An increase of roughly ten centimeters in mean wetted width corresponds to a decrease
near 1072 gs~!. These effect sizes are approximate, but they convey the strength of the
morphological control. In practical terms, higher eBI and larger width imply stronger
partition of discharge, more wetted perimeter, and more bar-adjacent low-velocity zones,
all of which promote temporary storage and reduce the outlet flux under fixed inflow.

o
0.4
o
—_ -~
n S~
03 DT
: Lo
E 02 O~~~ ®
5 (0] S~ ~
g © @ O~~_
< 01 ~<o
~
2 (@) (@) S~o - ‘
0.0 ~~_
-0.1
1.5 2.0 25 3.0 35 4.0
Mean eBI
Cluster
© cluster 0 @ cluster4 @ cluster 8 @ cluster 12
© cluster1 @ cluster5 @ cluster9 © cluster 13
© cluster2 @ cluster 6 @ cluster 10 @ cluster 14
© cluster3 @ cluster7 @ cluster 11 © cluster 15

Figure 3.12: Cluster-average sediment transport (Q),) versus entropic braiding index (eBI).
The dashed line is a linear fit; the shaded region is the 95% confidence interval. Higher
eBI (more diverse, partitioned braiding) is associated with lower average transport.

Figure 3.14 summarizes co-variation among descriptors and transport statistics. Width,
area, sinuosity, BI, eBI and the BI to eBl ratio are highly inter-correlated (coefficients near
0.9). Each of these geometry metrics is negatively correlated with both the mean and
the standard deviation of Qs with |r| 2 0.8. Hence, simple and narrow states tend to
pass more sediment and do so more intermittently, while complex and wide states act as
low-throughput and low-variability storage configurations. Mean and standard deviation
of Qs are themselves positively correlated (r =~ 0.88), so higher-flux states are also more
volatile.
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Figure 3.13: Cluster-average sediment transport (Q),) versus mean wetted width. Colors
denote states; the dashed line is a linear fit with 95% confidence band. Wider configurations
tend to exhibit lower transport, suggesting that width acts as a proxy for partitioning and
storage under the conditions of this experiment.

The colored time series in Figure 3.15 places these patterns in context. Large pulses line up
with entries into narrow, low-eBI states such as 00, 01, 02 and later 10. Quiet periods occur
during rapid shuttling among wide, high-eBI states such as 04, 05, 09 and 13. Peaks rarely
occur as isolated spikes. They arrive in bursts that last tens to a few hundred minutes,
during which the system dwells in a high-transport state and then cascades through one
or two intermediates. State 07 often appears as a transient gateway in these sequences.
This behavior is consistent with hysteresis reported in laboratory and field studies, where
the geomorphic adjustments that sustain a pulse outlast the initial trigger (P. Ashmore,
1993; Benavides et al., 2022; Egozi & Ashmore, 2009).

Two practical inferences follow. First, either eBI or width can serve as a single proxy for
partitioning and storage in this facility. Width is easy to measure and performs nearly as
well as eBl. Second, because the geometry metrics are strongly collinear, a compact index
or a first principal component would capture most of the predictive content with minimal
redundancy, which is useful for following Markov state-based modeling.

Across hydrographs many studies report a positive association between active width
and bedload rate. Those patterns reflect co-variation with discharge. Our experiment
holds discharge fixed. Wider wetted width here occurs mainly in high-eBI states where
discharge is split among several threads and bars store sediment. The negative relation
between width and (@) therefore reflects internal partitioning and storage under steady
boundary conditions rather than contradicting discharge-controlled scaling (P. Ashmore,
1993; Benavides et al., 2022; Egozi & Ashmore, 2009).
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Figure 3.14: Correlation matrix between cluster-average sediment transport statistics ((Qs),
Std[Qs]) and planform descriptors (wetted area, wetted width, sinuosity, BI, eBI, BI/eBI).
Cool colors denote negative correlations; warm colors denote positive correlations.
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Figure 3.15: Time series of sediment transport rate (), during the flume experiment,
colored by the active morphological state at each time step. Transitions from low-transport
states (e.g., 04, 05, 09, 13) to high-transport states (e.g., 00, 01, 02, 10) align with major
sediment pulses. Low-transport periods involve rapid switching among states, while
high-transport phases often persist for 50-200 minutes and exhibit hysteretic sequences.
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The evidence from bivariate fits, the correlation matrix and the colored time series all point
in the same direction. State membership is a strong determinant of transport behavior.
Accurately representing the timing and probability of transitions among states is thus
essential for reproducing bursts and lulls in the outlet record, which motivates the Markov-
state model introduced in Section 3.4.

3.4 Markov Model Construction

As stated at the beginning of this chapter, our aim is to capture the evolution of the braided-
river experiment with a probabilistic description based on a Markov chain. In what follows
we construct a continuous—time Markov chain (CTMC) from the image—derived state
sequence. The model requires estimating two empirical components from data and relating
them to the standard CTMC machinery. First, we estimate the state—specific residence
(departure) rates A = {\;} from the observed durations of uninterrupted sojourns in each
state 7. Second, we estimate the embedded jump probabilities P = {p;; },; by counting
all observed transitions ¢ — j and normalizing by the number of departures from i. These
two ingredients jointly determine the infinitesimal generator ) of the CTMC: for i # j,
the off-diagonal entries satisfy ¢;; = A; p;;, while the diagonal entries are ¢;; = —\;. In
this embedded—chain view, self-transitions are not represented in P; state persistence
is encoded entirely by the residence rate \;. Together, the pair (A, P) fully specifies the
model used throughout the remainder of the chapter.

The classification of each image into one of the sixteen clusters described in Section 3.3
allows us to construct a time series of the active morphological state at each sampling
step. This labeled sequence is shown in Figure 3.16, where each minute of the experiment
is assigned a corresponding state. Visual inspection of this timeline already suggests a
strong heterogeneity in how long the system remains in each configuration as individual
dwell times range from a few minutes to several hours. Representing such contrasts with
a discrete-time chain defined at the 1-min sampling interval would force long segments
to appear as hundreds of successive self-loops and short segments to rely on transition
probabilities that are nearly zero, blurring the physical meaning of a model step and
complicating comparison with the measured sediment-transport signal.
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Figure 3.16: Temporal distribution of morphological cluster states throughout the experi-
ment. Each dot marks the active state at a given minute. A small vertical jitter improves
the visual separation of overlapping points and conveys the density of state occurrences
over time.

A continuous-time formulation avoids this ambiguity. In a CTMC, the system remains in a
given state for a random time that follows an exponential distribution (the only continuous
distribution compatible with the Markov memoryless property), and then jumps to a new
state according to the fixed probabilities P. This captures the wide variability in dwell
durations without increasing the number of parameters and yields a clean separation
between persistence (governed by A) and reconfiguration (governed by P).

To construct the model from the observed state sequence, we proceed in two steps. For
each state i, we collect all uninterrupted episodes and compute the sample mean (7;); the
maximum-likelihood estimate of the residence rate is then A; = (7;)~!. We next count all
transitions ¢ — j with j # ¢ and normalize by the number of departures from ¢ to compute
the empirical jump probabilities p;;. The resulting estimates are summarized as a set of
representative dwell-time histograms with exponential overlays (Figure 3.17) and as the
full transition—probability matrix (Figure 3.18); the numerical values of A are reported in
Table 3.8. In Figure 3.18 we omit the main diagonal by design, since self-transitions are
not modeled in P; state persistence is encoded by ;.

Because the images are sampled every one minute, sojourn times are generated at that res-
olution. In practice, the vast majority of state episodes extend well beyond a single minute
(often tens of minutes to hours), so discretization effects are minor at the time scales of
interest. This is consistent with independent flume studies that resolve morphodynamic
changes at short cadence (about 2 minutes) and document rapid adjustments superim-
posed on longer reorganizations in braided channels (Vesipa et al., 2018). High—frequency
sampling is therefore essential to capture both short-lived excursions and sustained reor-
ganizations, and our 1-minute frequency lies well within the window needed to observe
such changes.
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Table 3.8: Estimated rate parameter A for the exponential distribution fitted to the durations

of continuous presence in each cluster. Values are expressed in inverse minutes.

Cluster A Cluster A Cluster A
Cluster 00 0.004 Cluster 01 0.006 Cluster 02 0.006
Cluster 03 0.014 Cluster 04 0.005 Cluster 05 0.025
Cluster 06 0.025 Cluster 07 0.037 Cluster 08 0.013
Cluster 09 0.009 Cluster 10 0.049 Cluster11 0.019
Cluster 12 0.030 Cluster 13 0.016 Cluster 14 0.027
Cluster 15 0.015
Cluster 03 Cluster 05
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Figure 3.17: Empirical dwell-time histograms (blue bars) for four representative clusters,
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overlaid with the fitted exponential probability—density functions (red dashed lines) using
the maximum-likelihood rates reported in Table 3.8. The panels illustrate the spread in
residence behavior across the state space: Cluster 03 and Cluster 08 occupy an intermediate
regime, whereas Cluster 05 lingers longer and Cluster 12 turns over more rapidly.

At this point a couple of implementation details need to be clarified.

(i) Minutes labeled as “noise” by HDBSCAN in Section 3.3 were mapped to the nearest

series for inference.

cluster in the UMAP space (nearest neighbor assignment), ensuring a continuous state

(ii) The experiment was designed and run long enough to reduce statistical uncertainty in A
and P. Nevertheless, from a mathematical standpoint absolute proof of model adequacy is
elusive, and finite samples, particularly for rare states, inevitably leave residual uncertainty
in tail behavior and low probability transitions. When simulating from the fitted CTMC in
Chapter 4 we initialize from a random state (a uniform draw over the sixteen states unless
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otherwise specified), which keeps initial condition assumptions neutral.

The estimated rates are shown in Table 3.8, the full transition probability matrix is pre-
sented in Figure 3.18, and a set of representative dwell time histograms with their fitted

exponential curves is provided in Figure 3.17. The complete set of dwell-time histograms
for all clusters is provided in Appendix C.

Taken together, the residence time distribution visualized in Figure 3.17 and tabulated

in Table 3.8, along with the jump probabilities in Figure 3.18, fully define the model that
underpins the remainder of this chapter.
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Figure 3.18: Transition—probability matrix P for the embedded jump chain (rows: current
state; columns: next state). Entries on the main diagonal are omitted because state persis-
tence is encoded by the residence rates \i; off-diagonal intensities reflect the empirical
probability of jumping from one morphological state to another upon departure.

The spectrum of \; shows a clear ordering that reflects both planform complexity and
sediment transport. The smallest rates occur in wide, bar-dominated braids (Clusters 09,
13, and 05), with median residence times of two to three hours. These states have the widest
channels, the highest braiding indices (BI and eBI), and the lowest mean sediment loads,
indicating that once a wide multi-thread braid is established the system tends to store
rather than export sediment. At the other extreme, Clusters 00, 01, and 02 have the highest
rates and residence times shorter than ten minutes. They are the narrowest and least
braided yet carry the largest mean sediment fluxes, consistent with frequent adjustments
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under energetic, sediment-rich conditions such as short scour—fill cycles or rapid chute
activation. Intermediate states (e.g., Clusters 03, 08, and 12 in Figure 3.17) fall between
these extremes in both geometry and transport. Their fitted exponential curves align
with the empirical histograms, supporting the exponential residence time assumption and
showing that rates scale with morphological complexity and transport regime. Motivated
by this pattern, we attempted to link \; to simple morphometric descriptors (i.e., wetted
width, BI/eBI, junction density, active width), but with the parameter set used in this
thesis the associations were weak and inconsistent, and did not yield a reliable predictive
mapping of \; across states. Future research on this topic would be a good improvement
for the model.

Overall, the residence rate ordering matches the geomorphic continuum in Table 3.6
and the two transport regimes in Table 3.7. Simple high load channels are short lived,
while complex low load braids persist. This supports modeling state changes as a CTMC,
where the estimated rates capture the asymmetric time scales of river morphodynamics.
The CTMC is fully defined by the residence rates A and jump probabilities P, which
specify the generator () and allow both analytical summaries (such as state occupancies
and mean first passage times) and forward simulation in Chapter 4. The dwell time
histograms (Figure 3.17) and the transition matrix (Figure 3.18) provide evidence for
this representation and link back to the morphology—transport contrasts described in
Section 3.3.

3.4.1 Insights from the Markov Representation of the System

The Markov chain model provides a probabilistic view of how morphology, transport, and
state changes interact in the braided system. We use it here to test how well the Markov
assumption reproduces the observed dynamics. Cluster average sediment transport spans
more than an order of magnitude, from (Q;) ~ 0.04 gs™! in cluster 9 to ~ 0.43gs™! in
cluster 0. Wetted width ranges from ~ 19.7 cm (cluster 1) to = 70.2 cm (cluster 8), while
braiding indices increase from Bl/eBI ~ 1.76/1.54 (cluster 1) to ~ 5.40/4.25 (cluster 9).
These trends trace a continuum from narrow single thread channels to wide bar rich
braids. Image counts are uneven, from 1954 in cluster 0 to 13729 in cluster 11, anticipating
unequal occupancies that the Markov model quantifies.

Looking again at the sediment transport series colored by state (Figure 3.15), we see clear
regimes linked to morphology. Low transport is often associated with rapid alternation
among wide and highly braided clusters that favor storage, especially 5, 9, and 13 (see
Table 3.6). In contrast, the largest transport pulses occur during excursions into simpler
and straighter states such as 0, 1, 2, and 10. Intermediate clusters, including 7, 11, and 12,
often appear along the hysteretic paths into and out of high transport episodes.

Figure 3.19 summarizes the trade off between persistence and activity. States with many
transitions have short mean stays, while states with few transitions persist for much longer.
This inverse envelope is consistent with a Poisson escape process where the departure rate
Ai controls both transition frequency and average dwell time (E[r;] = 1/);). Bubble areas
add the transport dimension. Within the green hull, larger markers indicate that highly
active states tend to convey higher mean fluxes. Within the red hull, bubbles are smaller
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except for cluster 0, which combines long residence with high transport.

Three regimes emerge:

(i) Red -anchor states (0, 1, 2, 4): very few transitions (< 50) and mean dwell times well
above 150 min, i.e., small escape rates. Only cluster 0 couples this persistence with
very high mean transport (see Table 3.7); clusters 1 and 2 show moderate transport,
while cluster 4 is long-lived but low—transport.

(ii) Blue — intermediate states (3, 5, 6, 8, 9, 13, 14, 15): moderate activity (~80-200
transitions) and intermediate persistence (~40-110 min). These include the widest,
most braided, storage-prone morphologies; bubble sizes are generally small to

moderate.

(iii) Green — transit states (7, 10, 11, 12): the shortest mean stays (< 60 min) and the
highest activity (> 350 transitions). Bubbles are typically larger, highlighting the
tendency of fast-reorganizing configurations to carry higher mean transport.
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Figure 3.19: State persistence versus activity. Each point is a cluster (labelled by ID). The
x-axis shows the number of transitions (entries+exits) and the y-axis the mean stay time in
minutes (= 1/);). Marker area is proportional to the cluster’s mean sediment transport
(larger bubbles indicate higher flux). Colored ellipses group states with similar behavior:
long residence and few transitions (red), intermediate regime (blue), and short residence
with many transitions (green). The larger bubbles concentrated in the high-activity group
reflect that states with frequent adjustments tend to convey higher mean transport.
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The red group is interesting. Clusters 0, 1 and 2 combine very long dwell times with
the high average transport (Table 3.7). Their medoids (Figure 3.10) are a narrow, weakly
braided single thread with low BI/eBI, i.e., a hydraulically efficient pathway. Once such
a confined thread establishes, scour—conveyance feedbacks deepen and maintain the
thalweg, suppressing bar splitting and sustaining high transport. By contrast, cluster 4
is also persistent but low—transport, reflecting a stable yet partitioned, storage—prone
morphology. Hence, longevity alone does not determine sediment yield; the type of
persistent morphology (conveyance—efficient versus storage-dominated) is decisive.

3.4.2 Transport changes associated with state transitions

Looking back to the transition-probability matrix (Figure 3.18), we can identify dominant
morphological pathways as certain pairs of states exchange more frequently than others,
revealing recurrent morphodynamic cycles. This preferential behavior underscores the
structured evolution of the system through a subset of favored transitions.

An alternative, more explicit view of jump frequency and directionality is given by the
most frequent bidirectional pairs (Figure 3.20). Nearly symmetric exchanges emerge for
some pairs (e.g., 10 <+ 11 and 7 <+ 12), which appear often despite short dwell times (green
hull in Figure 3.19). Their prominence reflects high activity rather than persistence and
helps explain how short-lived transit states can occupy a large fraction of the transition
record. The full list of transitions is available in Appendix D.
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Figure 3.20: Most frequent bidirectional transitions between distinct morphodynamic
clusters. Each cluster pair (e.g., 10 <+ 11) is plotted as two adjacent bars, one per direction
(10 — 11 and 11 — 10). Bar height indicates the number of observed transitions, and
numbers above each bar give exact counts.

We now place these frequency patterns next to persistence and activity, and we evaluate
their transport consequences with the ordered heatmap. The persistence-activity diagram
in Figure 3.19 shows that green states are short lived and highly active, blue states are
intermediate, and red states are long lived with few transitions. The heatmap in Figure 3.21
maps the change in mean sediment transport AQs = (Qs)next — (@) current for each ordered
transition. Blue cells indicate that transport increases after the jump, and red cells indicate
a decrease. Read together, Figures 3.19, 3.20, and 3.21 show that frequent exchanges
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within the green set dominate counts while the largest transport swings are tied to regime
crossings between red, blue, and green.
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Figure 3.21: Change in mean sediment transport for ordered transitions between clusters.
Each cell reports AQ; in gs™! for the jump from the row state (current) to the column
state (next). Blue indicates an increase in transport and red a decrease.

Table 3.9: Five transitions with the largest absolute change in mean transport. Group
membership follows Figure 3.19. Red means anchor, blue means intermediate, green
means transit.

From To Groupchange AQs[gs™!] Rankby |AQ;]

0 9 red — blue —0.24 1
0 13  red — blue —0.21 2
1 12 red — green  —0.21 3
13 0 blue —red +0.21 4
8 0 blue — red +0.20 5
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The five transitions with the largest absolute change in mean transport are listed in

Table 3.9. They align with jumps that cross color groups identified in Figure 3.19. Below
we interpret each pair using morphometrics reported in Table 3.6 (BI, eBI, mean wetted
width) and the regimes in Figure 3.19.

0 — 9 (red to blue, AQs = —0.24). Cluster 0 is a narrow, weakly braided single
thread with low BI and eBI and small wetted width in the long residence red group.
Cluster 9 is a wide, bar rich braid with high Bl and eBI and large wetted width in
the blue group. The large negative AQ; reflects a switch from a conveyance efficient
pathway to a storage prone, partitioned morphology where transport drops.

0 — 13 (red to blue, AQ; = —0.21). Same mechanism as above. Cluster 13 is also
wide and braided with high Bl and eBI. The jump out of the efficient single thread
reduces mean transport sharply as flow spreads across multiple bars and threads.

1 — 12 (red to green, AQ; = —0.21). Cluster 1 is among the narrowest and least
braided states with very low Bl and eBI and the smallest mean wetted width in the
ensemble. Cluster 12 belongs to the high activity green group with short residence
times and frequent reorganizations. The strong negative change indicates that
leaving a narrow, efficient corridor for a transient configuration reduces mean
transport.

13 — 0 (blue to red, AQ, = +0.21). The mirror image of the 0 — 13 jump. Moving
from a wide, storage prone braid with high BI and eBI and large wetted width into
the confined single thread produces one of the largest transport increases in the
dataset.

8 — 0 (blue to red, AQ; = +0.20). Cluster 8 has the largest mean wetted width and
high BI and eBI among the blue states. Transitioning into the narrow, low BI cluster 0
consolidates flow and raises transport markedly. The near tie with 9 — 0 reinforces
that blue to red jumps are transport enhancing regime shifts.

Color level transition structure

We aggregated transitions by the three regime groups identified in Figure 3.19. The
resulting directional counts are red to red 4, red to blue 52, red to green 7, blue to red 50,
blue to blue 284, blue to green 180, green to red 8, green to blue 179, green to green 723.
Row normalizing gives the probabilities in Table 3.10.

Table 3.10: Row wise transition probabilities between color groups

From group Tored Toblue To green

Red 0.06 0.83 0.11
Blue 0.10 0.55 0.35
Green 0.01 0.20 0.79
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From this data, three points emerge:

¢ Probability of changing color versus staying within color. Red almost always
changes color when it moves, with a change probability near 0.94 and a same color
probability near 0.06. Blue splits its moves between staying in blue and changing
color, with a change probability near 0.45 and a same color probability near 0.55.
Green is highly persistent at the color level, with a same color probability near 0.79
and a change probability near 0.21.

o Where each group tends to go when it changes color. When red changes color it
goes to blue about 88 percent of the time and to green about 12 percent of the time.
When blue changes color it goes to green about 78 percent of the time and to red
about 22 percent of the time. When green changes color it goes to blue about 96
percent of the time and to red about 4 percent of the time. Direct green to red and
red to green jumps are rare, which supports a two step pathway through blue for
regime flips.

¢ Volume of traffic by color pair. The most common color preserved jump is green
to green with 723 events. The most common cross color pathway is blue and green
with 359 events combined, followed by blue and blue with 284 events and blue
and red with 102 events. Red is the least connected basin by count. This pattern
reinforces the view that blue acts as a bridge between the persistent green basin
and the compact red set, consistent with the transport changes seen in the ordered
heatmap and with the role of the green states as short lived but internally active
configurations.

With this information, we can state that large transport changes align with regime cross-
ings. Jumps from red to blue replace a confined, hydraulically efficient pathway by a
partitioned, storage dominated braid and yield the largest transport decreases. Jumps from
blue to red consolidate discharge into a single thread and produce the largest increases.
Transitions involving the green group often encode brief, reorganizing episodes and tend
to reduce transport when they originate in red states. These patterns are consistent with
the persistence-activity structure in Figure 3.19 and with the morphometric ordering in
Table 3.6. The barplot in Figure 3.20 confirms that many of the most common exchanges
occur among green states or between green and blue, which drives the high transition
counts without producing the most extreme AQ; values. The heatmap and the color
matrix together show that rare but decisive visits to red and the blue to red or red to blue
jumps control the largest changes in transport.

Looking ahead, it would be useful to recover the three regime groups automatically rather
than defining them a posteriori. A hierarchical or hidden semi-Markov model could learn
a coarse regime layer above the 16 states. Other options include using nonparametric
mixtures such as a Dirichlet process to "let the data determine the number of regimes". An
automated procedure would yield reproducible boundaries, attach uncertainty to group
membership, and facilitate cross-experiment comparisons. Certainly, this is a lot of job to
be done, and more long experiments to perform.
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3.4.3 Export efficiency, accessibility, and uncertainty across regimes
3.4.3.1 Export efficiency versus temporal occupancy

Another perspective that complements the persistence—activity and transition analysis
is the relative contribution of each state to cumulative sediment export compared to its
temporal occupancy (Figure 3.22). Read together with Figure 3.19, the barplot shows a
clear color pattern. Green states (7, 10, 11, 12) punch above their weight in export despite
short mean stays. Blue states with wide, braided planforms (5, 8, 9, 13, 14, 3, 6, 15) tend to
occupy time without exporting much, which is consistent with storage-prone morphology.
Red states (0, 1, 2, 4) are few and long-lived at the state level, and they exhibit high export
efficiency per unit time, especially clusters 1 and 0.
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Figure 3.22: Relative importance of morphological clusters. Dark bars give the percentage
of total sediment load exported while each state was active, and light bars show the
percentage of experiment time spent in the same states. Values are sorted by sediment
contribution, which highlights clusters that punch above (left of the dotted line) or below
(right of the dotted line) their temporal weight.

Two examples anchor these contrasts. On the export-efficient side, cluster 10 contributes
about one tenth of the total exported mass while occupying well under one tenth of
the time, and cluster 1 contributes close to nine percent of export while present only a
few percent of the time. On the reservoir side, clusters 9 and 13 spend a sizable share
of the record yet contribute only a small share to export. These tendencies follow the
morphometrics in Table 3.6. Clusters 9 and 13 are wide with high BI and eBI and thus
partition discharge and favor storage. Clusters 1 and 10 are narrower and less braided, so
they concentrate flow and export efficiently. The barplot therefore explains why the most
active group in the transition record (green in Figure 3.19) can dominate export even with
short individual dwell times.

3.4.3.2 Accessibility via mean first-passage times

Mean first-passage time mosaics provide a dynamic complement and quantify how quickly
the system can access either the export-dominant basin or the peak-load set (Figure 3.23).
Panel (a) reports the expected time to hit clusters 11 or 12. Panel (b) does the same for the
set of peak-load states 0, 1, 2, 7, and 10. Results align with the color structure established
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earlier. Access to the export-dominant basin is fastest from within the green set itself, with
MEFPT equal to 0 by definition for origins 11 and 12 and small values from green neighbors
such as 7 and 10 (63 and 43 min, respectively). Access from blue storage states is slower.
For example, starting in cluster 9 the expected time to reach the export-dominant basin is
about 513 min, and from cluster 8 it is about 559 min. Access from red states is slowest.
From cluster 0 the MFPT to the export-dominant basin is about 815 min and from cluster 2
it is about 624 min.

The peak-load set is much more reachable from many origins. From green and red states
the MFPT is 0 for origins already in the set (7, 10, 0, 1, 2). From blue origins the times are
moderate. For example, from cluster 8 the MFPT to the peak-load set is about 319 min and
from cluster 9 it is about 409 min. From blue cluster 13 the MFPT is about 360 min. These
numbers indicate that peak-load conditions are accessible on shorter horizons than the
export-dominant basin, which requires longer reorganization.

Two route examples illustrate these patterns. Starting from a braided blue origin such
as cluster 9, the system is expected to reach the export-dominant basin in about 513 min,
whereas it reaches the peak-load set in about 409 min, typically via short visits to green
transit states 7 or 10. Starting from a red single-thread origin such as cluster 1, the system
is already in the peak-load set by definition and thus has MFPT equal to O to that set, yet
it requires on the order of 389 min to reach the export-dominant basin. These read-offs
translate the transition structure into concrete lead times and connect them to the color

groups.
(a) MFPT to clusters 11 & 12 (b) MFPT to clusters 0, 1,2, 7 & 10
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Figure 3.23: Mean first-passage time mosaics. Left shows expected time in minutes from
each origin state to the export-dominant basin formed by clusters 11 and 12. Right shows
the corresponding MFPT to the peak-load set formed by clusters 0, 1, 2, 7, and 10. Shorter
times identify more direct pathways toward either long-term export or flash-transport
conditions.
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In summary, the three figures form a consistent story that matches the heatmap and
color-matrix analysis in the previous subsection. Green states dominate export through
many short visits and also act as gates to peak-load conditions. Blue states with high BI
and eBI hold the system for long periods and delay access to the export-dominant basin.
Red single-thread states are efficient exporters when active, but they are relatively isolated
in color space and require long reorganization to enter the high-occupancy export basin.

3.4.3.3 Entropy rate and sources of dynamical uncertainty

The entropy rate measures how much dynamical uncertainty each state contributes to the
sequence of morphologies. In a continuous-time Markov model it depends on two factors:
the escape rate \; and the Shannon entropy of the corresponding transition probabilities.
In simple words, entropy rate o« “leave often” x “many possible destinations.” Hence,
short-lived, highly mobile states contribute most to overall uncertainty, unless their exits
are concentrated toward a few partners that lower unpredictability.

The bar chart in Figure 3.24 confirms these expectations and connects cleanly with the
color structure in Figure 3.19. The largest contributions come from clusters 6, 8, 1, and 13.
Three of these belong to the blue group and combine moderate persistence with relatively
diffuse transition rows, so \;H(P;.) is large. Cluster 1 is a red state with high export
efficiency and a nontrivial fan of destinations, which lifts its entropy contribution despite
being in the long-residence family. At the other end, cluster 0 contributes the least. This is
consistent with its long dwell times and with a transition pattern that is neither frequent
nor highly dispersed.

Green transit states (7, 10, 11, 12) show sizable but not maximal bars. Their escape rates
are large, yet a portion of their traffic is concentrated in symmetric pairs, most clearly the
10<+11 and 7<+12 exchanges highlighted by the bidirectional counts. That concentration
lowers the Shannon entropy of the corresponding transition rows and prevents these
states from dominating the entropy budget. This mechanism explains why the green
group drives activity and often mediates regime crossings, while the blue group supplies
much of the uncertainty injected per unit time.

Taken together with the transition heatmap and the persistence-activity map, the en-
tropy-rate partition reinforces a coherent picture. Rapid—switch configurations inject
most of the unpredictability when their exits are distributed across many targets. Quasi
— deterministic swapping between preferred partners tempers uncertainty even under
high activity. Long-lived, stable morphologies act as entropy sinks. At the color level
this implies a division of roles. Blue states are the main entropy sources because they are
numerous and their exits are comparatively diffuse. Green states are the kinetic hub that
circulates the system quickly but not always unpredictably. Red states stabilize trajectories;
within red, cluster 1 is the notable exception that contributes a meaningful share of entropy
due to its richer set of exits.
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Viewed together with the MFPT mosaics and the export-time barplot, the entropy analysis
clarifies functional roles. Blue states act as main sources of dynamical uncertainty, delaying
access to the export-dominant basin. Green states provide the fastest conduits to peak
loads but generate less uncertainty due to paired exchanges. Red states, especially cluster 0,
reduce uncertainty through long sojourns, while cluster 1 stands out as a faster yet less
predictable exit from the red set. This triad of roles aligns with color-level transition
probabilities and with the transport shifts observed at regime crossings.

Q1 g ©

14

14

10
11
12

Cluster
W

15
13

AN O =

0.02 0.04 0.06 0.08 0.10 0.12
Entropy contribution (nats - min~?)

0.

o
(e}

Figure 3.24: Entropy-rate contributions of each morphological cluster, in nats per minute.
Bars quantify 7; \; H(P;.) up to a constant of base; higher values correspond to states that
the chain leaves often and that have many plausible destinations. The dashed line marks
the ensemble mean contribution.

3.4.4 Cross-Validation of the Markov Model

To test the external validity and robustness of the Markov model derived from the 1200 h
experiment (ExpL), we compare it against two independent runs of similar setup and
boundary conditions, each about 200 h (ExpA and ExpB). A rigorous proof of Markovianity
in geomorphic systems is generally not possible (Pawlowski & McCord, 2009). Our goal
here is then empirical, to verify that the same morphological states reappear in new
realizations and that the same dynamical features, including transition structure, short
term memory, and multi scale variability, are expressed in the shorter records.

We organize the validation around two complementary questions. First, morphological
coherence asks whether the states defined in ExpL reappear in ExpA and ExpB with
comparable geometry and transport signatures. Second, dynamic fidelity asks whether the
Markovian structure learned from ExpL reproduces the temporal organization observed
in the shorter runs.
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3.4.4.1 Morphological Coherence Across Experiments

We projected the binarized masks from ExpA and ExpB onto the frozen low dimensional
space learned in ExpL (PCA then UMAP), using the same preprocessing and normalization.
Each image was assigned to the nearest ExpL cluster centroid in that 3D space with a
Euclidean metric. Two checks summarize the outcome. First, cluster coverage shows
that all sixteen ExpL clusters received assignments from ExpA and ExpB, which indicates
that the catalog of states from the long run is not unique to that realization. Second, the
outlier rate was below 4.2 %, meaning that fewer than this fraction of projected images lay
beyond the 95th percentile intra cluster distance observed in ExpL. This points to strong
compatibility of the embedding and a low frequency of ambiguous assignments.

Figure 3.25 illustrates these results. Panel (a) shows that the distribution of distances
from projected images to their assigned centroid closely follows that of ExpL, with only
a thin tail beyond the dashed outlier threshold. Panel (b) plots distances from each
projected point to all centroids. Clear minima (red and blue markers) appear across most
cluster IDs, showing well defined nearest neighbor matches rather than flat valleys. Taken
together, these results support that the morphological state space learned from the long
run generalizes to independent realizations and that the clusters correspond to physically
recurrent configurations rather than artifacts of a single dataset.

(a) Distance distribution to nearest cluster centroid (b) Distance to all cluster centroids per point
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Figure 3.25: Validation of morphological clustering for ExpA and ExpB. (a) Distribution
of distances from projected points to their nearest cluster centroid (ExpA and ExpB),
compared to ExpL (shaded). The dashed line marks the 95" percentile of ExpL distances.
(b) Pairwise distances between projected points and all centroids; red/blue markers
indicate the minimum per point. The spread of minima across most cluster IDs supports
broad coverage and unambiguous assignment.

3.4.4.2 Dynamic Fidelity of the Markov Process

Having established state space coherence, we now test whether ExpA and ExpB display
the same dynamical structure. As a basic comparability check, Figure 3.26 shows that
instantaneous sediment flux distributions overlap almost entirely across the three runs.
This confirms that the dynamic comparisons that follow are not affected by differences in
transport regimes.
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Figure 3.26: Global sediment transport distributions for ExpL, ExpA, and ExpB. The
histograms overlap almost entirely, with a shared mode near zero and heavy-tailed
behavior at high transport. The close agreement confirms that the shorter experiments
sample the full range of flux regimes observed in ExpL.

We examine event to event, short term, and multi scale behavior through three diagnostics
(i) the transition probability structure, (ii) the autocorrelation function (ACF) of sediment
flux, and (iii) the power spectral density (PSD) of the same signal.

1. Transition probability structure Figure 3.27 compares the 16 x 16 matrices for ExpL,
ExpA, and ExpB. High probability entries cluster near the diagonal and along a few off
diagonal corridors (for example 10 to 12 and 4 to 7), while low probability regions coincide
across runs. More than 80 % of ExpL entries with P > 0.15 reappear in both short runs.
Frobenius norm differences relative to ExpL (|| Pexpa — PexpL||F = 0.27, || Pexps — PexpLllF =
0.24) remain within the variability expected from a much shorter experiment.

2. Short-term temporal correlation. The ACFs of the flux series (Figure 3.28) decay rapidly
from p(0) = 1 to p(7) ~ 0.3 within 50-70 min and then taper slowly, crossing zero between
about 1000 and 1400 min. ExpA decorrelates slightly faster at lags beyond 200 min, yet
the overall shapes remain closely aligned, indicating a consistent memory time scale.
This behavior matches the expectations of a CTMC fitted to ExpL, with short lag decay
controlled by the leading eigenvalues and long tails governed by slower modes.

3. Multi-scale variability. Figure 3.29 compares the PSDs. Across 10751072 Hz the
spectra collapse onto a common power-law. Minor divergence at the highest frequencies
reflects the shorter duration of ExpA/ExpB, while agreement below ~ 3 x 1074 Hz is good.
Since the PSD of a first-order Markov process is set by its eigenspectrum, this concordance
supports that the eigenstructure inferred from ExpL represents the system’s variability.
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con Probability

Figure 3.27: Transition matrices for the 16-state model across the three experiments: (a)
ExpL, (b) ExpA, (c) ExpB. Light cells denote higher probabilities. The recurrence of
diagonal bands and key off-diagonal corridors across runs indicates robust connectivity
patterns.
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Figure 3.28: Autocorrelation functions of sediment transport for ExpL (red), ExpA (blue),
and ExpB (green). A rapid decay within 50-70 min is followed by a slow tail crossing zero
after ~1,000-1,400 min. The similarity across runs suggests a common memory time-scale.

In sum, the overlap of transport distributions, the correspondence of transition probabili-
ties, the shared ACF decay, and the very similar spectral scaling indicate that the Markov
model from the 1200 h record captures both the range of morphological states and the
key dynamical features seen in the independent 200 h runs. Under comparable boundary
conditions this validation supports using the fitted model for interpretation and stochastic
forecasting at experiment time scales.
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Figure 3.29: Power spectral density of sediment transport for ExpL (red), ExpA (blue), and
ExpB (green). All exhibit a common power-law decay (~ 1) over 107°-1073 Hz, indi-
cating scale-invariant fluctuations across minutes to daily scales. Agreement is strongest
at low frequencies, where record length is less limiting.

3.5

Summary of Key Points

¢ A multi-state representation is feasible and useful. The joint use of edge-based

(MHD) and area-based (Dice) distances, low—dimensional embeddings, and den-
sity—based clustering yields morphologically coherent states that span a clear contin-
uum from narrow single-thread planforms to wide, bar-rich braids.

Morphometric trends are systematic across states. Wetted width, wetted area,
sinuosity, BI, and eBI all increase toward multi-thread planforms. eBI acts as a stable
partitioning that is more robust than BI to resolution and stage noise.

Transport is state-conditioned and anticorrelated with partitioning. Cluster-
average bedload rate (Q);) is highest in simple, weakly braided states and lowest
in wide, partitioned states. Across states, (();) is strongly negatively correlated
with eBI and with wetted width, consistent with the idea that partitioning promotes
storage.

High-transport pulses are linked to regime changes. The ordered heatmap of AQ,
shows the largest decreases for red to blue transitions and the largest increases for
blue to red transitions, while green states act as a kinetic bridge. This explains why
large pulses follow entry into conveyance-efficient states and why load decreases
when the system spreads into storage-prone braids.

Persistence-activity structure is well represented by a CTMC. Dwell-time his-
tograms are well approximated by exponentials. Estimated exit rates \; order states
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consistently with morphology. Long-residence anchors (red) have small J\;, transit
states (green) have large \;, and blue states fall in between.

¢ Color-level transitions clarify regime connectivity. Row-normalized counts show
that red almost always exits to blue, green mostly exits to blue, and direct red-to-
green moves are rare. Blue therefore acts as the bridge between a compact red set
and a persistent green basin, matching the frequency barplot and the AQ, heatmap.

o Accessibility can be quantified with MFPTs. Mean first-passage time mosaics
identify shortest pathways and lead times. Peak-load states (0, 1, 2, 7, 10) are more
reachable on shorter horizons than the export-dominant basin (11, 12). Access to
11-12 is fastest from green, slower from blue storage states, and slowest from red
anchors.

o Export efficiency versus time occupancy separates throughput from persistence.
Green states (7, 10, 11, 12) contribute disproportionately to cumulative export relative
to their time share, blue storage states (5, 8, 9, 13, 14) occupy time but export little,
and red single-thread states are efficient exporters when active.

o Uncertainty sources are identified by the entropy rate. Entropy contributions reflect
the product of exit rate and row-wise dispersion. Blue states are major entropy
sources because their exits are comparatively diffuse, green states inject activity but
paired exchanges temper unpredictability, and red states stabilize trajectories.

~

¢ Direct regression from morphometrics to \; is weak with the present descriptors.
Attempts to connect exit rates from simple morphometrics (wetted width, BI/eBI,
junction density, active width) produced weak and inconsistent associations across
states, suggesting that richer features or hierarchical models are needed for predictive
mapping of i

¢ Results are stable across independent runs. Global transport histograms over-
lap across experiments, high-pass filtered series share the same decay scale, and
power spectral densities collapse to a similar slope over a big range of frequencies,
supporting reproducibility of the patterns.

Representing braided rivers as a finite set of discrete morphological states, each with
a measurable residence rate and a transition kernel, is both feasible and advantageous.
It explains intermittency as time spent mixing among states with different conveyance
efficiency, provides a compact (A, P) summary that supports analytical diagnostics and
forward simulation, and remains stable across independent runs. This multi-state framing
is more informative than a single typical descriptor because it links planform, transport,
and dynamics in a probabilistic model that will be used for forecasting in Chapter 4.
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4 | Markov—-Based Monte Carlo and

Bootstrap Analysis

We begin with the key results from Chapter 3. The transition matrix P and the exit rates A
define the continuous time Markov chain used here. Chapter 3 also provided a catalog
of states with medoids and morphometric profiles, together with transport distributions
£i(Qs) for each state. Dwell times followed exponential patterns, which supports using \;
and P as a compact summary for simulation and diagnostics. These are the elements we
now build on.

In this chapter we shift from state construction to transport surrogates and model perfor-
mance tests, guided by the central question of whether the state-based Markov description
carries sufficient information to reproduce transport statistics, capture temporal structure,
and provide operational forecasts when direct flux measurements are unavailable. We
first simulate multiple state sequences with the CTMC using both ) and f’, and then
assign transport by bootstrap resampling from f;(Q;), producing synthetic ) series that
retain both inter—state differences and random variability. A Bayesian screening step
filters the series to match experimental mean and variance, while image-based similarity
metrics offer an additional check. Building on this, we train a decision tree that relies
exclusively on image metrics to identify acceptable sequences. Finally, we validate the
retained series through moments, extremes, autocorrelation, and spectra, quantify the
variance attributable to state switching, test sensitivity to the number of clusters, and
propose a lean hybrid model for image-only applications.

Section 4.1 explains the Monte Carlo, bootstrap, and Bayesian screening, and compares
synthetic and experimental series. Section 4.2 studies the variance decomposition and
how results change with the number of clusters. Section 4.3 presents a hybrid model that
keeps state means but simplifies random variation, and shows how scaling with discharge
or images can supply mean surrogates when discharge data are missing.
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Chapter 4 Markov-Based Monte Carlo and Bootstrap Analysis

~
From Chapter 3:
Experimental Monte Carlo simulations Model Validation
transition matrix P
& lambdas
J

- Monte Carlo simulation of state - Acceptance test based on image-derived
sequences with random dwell times; metrics plus mean/variance of Qs;
- Bootstrap resampling of transport - Check frequencies, transitions, durations;
values per state; - Variance decomposition and decision-

tree analysis of accepted series.

Figure 4.1: Schematic overview of the Monte Carlo and bootstrap pipeline used in Chap-
ter 4. From left to right we show the experimental transition matrix P and exit rates A
from Chapter 3, Monte Carlo simulations of state sequences with random dwell times,
and model validation.

4.1 From the Transition Matrix to Synthetic Sediment-Transport
Series

4.1.1 Monte Carlo-Bootstrap Framework

Our goal is to translate the information in the experimental transition matrix P into a
large ensemble of synthetic realizations. The procedure has two layers, a Monte Carlo
simulation of the state sequence followed by a bootstrap resampling of sediment transport
rates, but the bootstrap is applied only to state sequences that first pass a moment based
screen. We generate Ny,j = 100000 state trajectories of length 7" minutes, which serve as a
broad prior over paths implied by P and a global dwell rate. We chose 7" to be equal to
the length of ExpL (~ 1200 » = 72000 min).

1. State sequence simulation (Monte Carlo). We start from a random initial state and
draw a dwell time 7 from an exponential distribution £()\). The rate \ is sampled once
for the entire trajectory from the range [0.001, 0.05] s~! and then converted to min~! to
match the one minute sampling. In principle each state could have its own A, which
would be richer but far more expensive, so we use a single ) for all states as a practical
approximation that preserves the observed residence time range while enabling large
ensembles. The system remains in the current state for 7 minutes (rounded to the nearest
minute) and then jumps to a new state sampled from Row i of P, where i is the current
state. The steps repeat until the trajectory reaches length 7. This procedure is summarized
in Algorithm 1.

Algorithm 1: State-sequence simulation (Monte Carlo)

Initialize random initial state ;

Initialize time t < O;

Sample one A ~ ¢[0.001, 0.05] s~ and convert to min~};
while t < T do

Sample dwell time 7 ~ £(\) in minutes;

Hold state i for round(7) one minute steps;

Update t < t + round(r);

Sample next state j from Row i of P;

Update current state ¢ < j;
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Moment screen on state-only replicas. Let ms = E[Q; | S = s] and vs = Var(Qs | S =
s) denote the empirical mean and variance of transport in state s estimated from the
experiment. For a simulated state path {S;}/_; we compute the implied series moments
without drawing transport values,

N A M A
=5 Z mss, o = T Z vy + Vart(mgz«),
t=1 t=1
which combine within-state scatter with between-state contrasts. A replica is accepted
when
' —pl <0.002gs™! and 0% —0?| <0.001 (gs—1)2

Out of the 100000 state trajectories approximately 0.12% satisfy these tolerances. Only
these accepted paths proceed to the bootstrap layer. The same acceptance fraction deter-
mines the number of synthetic transport series used in subsequent analyses.

2. Bootstrap of sediment transport. Each state s is linked to an empirical bag By =
{Qs1;- -, Qsn.}- For every minute ¢ in an accepted replica we draw Q3 (t) ~ Bs: with
replacement. Because this sampling is stratified by state, the synthetic series inherits both
inter-state differences in mean transport and intra-state variability observed in the data.
Algorithm 2 summarizes the procedure.

Algorithm 2: Bootstrap of sediment transport on accepted paths

for each minute t in an accepted state sequence do
Identify simulated state S;;
Define empirical bag Bs:;
Sample with replacement Q3 (t) ~ Bs;;

The resulting Q% (¢) preserves inter-state contrasts and intra-state variability;

Figure 4.2 shows the experimental () in blue together with a representative synthetic series
()% in orange generated from an accepted state sequence. The synthetic series is stochastic
at the minute scale yet reproduces range, intermittency, and burst structure, indicating
that combining Monte Carlo state paths with state conditioned bootstrap captures the
main statistical features of the system. Section 4.1.2 formalizes the acceptance rule and the
surrogate screening based on image derived metrics.

The Monte Carlo layer generates state paths under P with a single trajectory-level dwell
rate consistent with the one minute sampling. The moment screen reduces this broad
prior to a small and well calibrated set, and the bootstrap adds within—state variability
while preserving differences between states. The workflow is reproducible, scalable, and
efficient, as most paths are discarded before resampling. Its modular design ensures
that future updates to P, the state catalog, or the dwell time model can be incorporated
without altering the screening or resampling steps. This completes the construction of the
synthetic ensemble, which is used next for validation in Section 4.1.3 and later for variance
decomposition in Section 4.2.
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Figure 4.2: Overlay of the experimental sediment transport series (();, blue) and a repre-
sentative synthetic series generated by the Monte Carlo and bootstrap model (Q}, orange).
Both are plotted in hours to visualize variability and event structure

4.1.2 Bayesian Screening and Decision-Tree Extraction

Screening state paths before bootstrapping is valuable chiefly because it reveals image
based predictors that flag acceptable paths even when @) is not measured, which enables
fast preselection and practical use in imagery only settings. The same pipeline brings
several additional gains. Bootstrap delivers uncertainty quantification by providing con-
fidence bands for statistics and curves such as means, variances, ACFs, PSDs, MFPTs,
and export totals. State conditioned resampling preserves heavy tails and heteroscedas-
ticity without parametric assumptions and, with a block option, short range temporal
dependence. The accepted replicas form a posterior predictive ensemble that supports
validation against many diagnostics, not only the first two moments. Resampling is robust
to outliers because it dilutes the impact of isolated extremes in s while respecting their
empirical frequency. Scenario testing is straightforward since one can modify P, adjust
dwell rates, or alter the state catalog and then rerun the screen with minimal code. Finally
the screened set yields simple operational rules because feature importances identify
image based thresholds that operators can apply when (), is unavailable. As an extra
benefit, the screen avoids computation on sequences that would miss the experimental
mean or variance, and it upgrades the prior of simulated paths to a posterior set that is
physically comparable with the experiment.

The 100000 Monte Carlo state trajectories in Section 4.1.1 form a prior over paths implied
by P and a global dwell rate. Each path is first labeled using state only information. We
compute the implied transport moments from the state means and variances,

1 & 1 &
wr= T ng:, o = T ng;« —I-Vart<m5;),
t=1 t=1

and accept a path when

' —p <0.002gs™' and |o* — 0% <0.001 (gs™ )2
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About 0.12% of the 100000 paths pass this screen. Only those accepted paths are boot-
strapped, which avoids resources on sequences that would miss the target moments.

We then ask whether simple image based descriptors can anticipate acceptance without
any reference to (). For every simulated path, accepted or rejected, we compute six met-
rics of the state sequence, namely state frequency difference, Frobenius distance between
transition matrices, Jensen-Shannon distance of state durations, entropy difference, diago-
nal distance, and Levenshtein distance. A shallow decision tree trained on these features
yields a conservative rule that closely reproduces the moment screen while remaining

easy to apply.

Figure 4.3 shows the learned splits. The root threshold is freq_diff < 0.015. The
left branch refines with levenshtein < 0.974 and a secondary freq_diff < 0.012.
The right branch splits on frobenius_diff < 0.95, then on dur_Js < 0.88, and fi-
nally on frobenius_diff < 0.952. Accepted paths concentrate in the region with
small state frequency difference and small Frobenius distance, which matches the visual
envelope in Figure 4.4. For plotting we use round numbers freq diff = 0.016 and
frobenius_diff = 0.956 as dashed guides, consistent with the tree thresholds.

Minimal decision tree reproducing the Bayesian screen

freq_diff <= 0.015
gini=0.5
samples = 100.0%
value = [0.5, 0.5]
class = accepted

levenshtein <= 0.974
gini =0.493
samples = 16.2%
value = [0.439, 0.561]
class = accepted

frobenius_diff <= 0.95
gini=0.5
samples = 83.8%
value = [0.512, 0.488]
class = rejected

frobenius_diff <= 0.952

freq_diff <= 0.012 frobenius_diff <= 0.873

gini =0.488 gini =0.497 gini =0.497
samples = 14.0% samples =2.2% samples = 61.5% samples =22.4%
value =[0.423, 0.577] value =[0.542, 0.458] value =[0.503, 0.497] value =[0.537, 0.463]

class = rejected class = rejected

class = accepted class = rejected

gini = 0.498
samples =19.0%
value = [0.532, 0.468]
class = rejected

gini = 0.449
samples =0.9%
value =[0.66, 0.34]
class = rejected

gini = 0.498
samples = 21.5%
value =[0.532, 0.468]
class = rejected

gini = 0.435
samples =2.1%
value =[0.32, 0.68]
class = accepted

gini = 0.493
samples = 12.0%
value = [0.44, 0.56]
class = accepted

gini=0.488
samples = 0.8%

value =[0.422, 0.578]
class = accepted

gini=0.478
samples = 1.4%

value = [0.604, 0.396]
class = rejected

gini=0.5
samples =42.5%
value = [0.489, 0.511]
class = accepted

Figure 4.3: Minimal decision tree inferred from the six image based metrics. The root split
is freq_diff < 0.015. Subsequent splits involve levenshtein < 0.974, freq diff <
0.012, frobenius_diff < 0.95, dur_Js < 0.88,and frobenius_diff < 0.952. Boxes
report Gini impurity, sample share, and class label

The resulting rule identifies the most informative parameters and provides a fast prefilter

that yields synthetic series closely aligned with the experimental record. A simple opera-

tional version uses the triplet {freq_diff < 0.016, dur_JS < 0.88, frobenius_diff <
0.956}. Any path meeting these thresholds can be bootstrapped with high confidence that

its mean and variance will match the laboratory series, while paths outside the envelope

can be discarded early.
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Figure 4.4: Trajectories projected on the {state frequency difference, Frobenius
distance} plane. Dashed lines at 0.016 and 0.956 mark operational cutoffs. The lower
left quadrant hosts nearly all paths that pass the moment screen, which confirms that
small frequency mismatch and small Frobenius distance are the dominant predictors of
acceptance

The two stage screen reduces the prior of 100000 simulated paths to a smaller posterior
set that matches the experimental mean and variance by design. The decision tree then
recovers most of these accepted paths using only a few image based thresholds. This
provides a conservative and precise prefilter that saves computation, allows operation
when @), is not available, and yields an ensemble suitable for variance decomposition
and validation. The thresholds are data driven and easy to recalibrate for new runs or
scenarios, and the feature ranking offers a compact checklist for operators who need fast
triage without transport data.

4.1.3 Validation of the Accepted Time Series

Having obtained a high quality subset of synthetic trajectories, we now test whether
the ensemble does more than get the average right. We ask whether it captures the
full statistical fingerprint of the experiment, from bulk behavior to rare extremes and
temporal structure. We use three complementary diagnostics (i) the marginal distributions
of ensemble means and variances, (ii) the return period curve of extreme events, and (iii)
the temporal dependence structure assessed with the autocorrelation function (ACF) and
the power spectral density (PSD).
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4.1.3.1 Global moments

The first requirement for a trustworthy ensemble is that each replica reproduces the bulk
statistics of the experimental transport signal, namely its mean p and variance o2. After
the two stage Bayesian screening in Section 4.1.2, 12436 realizations survived. Figure 4.5
shows the marginal distributions of the resulting 1* and o2*.
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Figure 4.5: Normalized histograms of (a) the mean transport rate pu* (blue) and (b) the
variance o2* (green) for the 12436 synthetic series that passed the screening. The experi-
mental benchmark is the red dashed line. Both distributions are tightly centered around
the target values: |u* — p|/p = 1.3% £+ 0.8 and |0** — 02|/0% = 0.9% 4 1.1 (mean + SD).
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Panel (a) displays a sharply peaked, nearly Gaussian histogram of replica means. The
mode coincides with the experimental benchmark (red dashed line) to within 0.1 %. The
spread, summarized by SD(x*), is only about 0.8 % of the target value. All series fall
inside the prescribed £2 % corridor and the cloud is symmetric, which indicates negligible
bias with |u* — pu|/pw=1.3% £ 0.8.

Panel (b) repeats the exercise for variances. Despite the broader natural range of ¢, the
distribution remains centered on the experimental value with comparable relative error,
namely |02* — 02| /0% = 0.9% =+ 1.1. The bell shaped outline shows that screening did not
distort variability and only removed pathological outliers.

Two additional checks strengthen this result. First, moments computed directly from the
bootstrapped Q% (t) series are virtually indistinguishable from the state implied moments
used in the screen, which confirms that the resampling step does not introduce bias in the
first two moments. Second, the concentration of the histograms relative to the broad prior
indicates strong posterior contraction of the ensemble, yet without mode splitting or skew,
so the accepted set remains diverse rather than overfit.

Because the histograms are normalized, the vertical axis reports probability density. Peak
densities exceed 300 in panel (a) and 500 in panel (b), a direct reflection of the tight
bandwidth around the targets (o,« ~ 7 x 1074 gs™! and 0,2 ~ 4 x 1074 gZs72). The
ensemble is therefore unbiased, precise, and individually compliant, which provides a
calibrated baseline for the next tests on extremes and temporal structure.

4.1.3.2 Extreme value behavior

Rare high magnitude transport pulses are of upmost importance when studying scour
risk and morphodynamic change, so the synthetic records must match not only the mean
rate but also the frequency of large exceedances. Figure 4.6 compares the empirical return
level curve from the experiment (red) with the ensemble summary from the accepted
replicas (blue median with gray p5 to p95 band). Across the full range resolved by the
record, from about 0.1 to 1200 h, the experimental curve tracks the ensemble median and
remains inside the uncertainty band. The spread widens only near the record length,
which is consistent with finite sample effects. This agreement indicates that the generator
reproduces the tail slope and scale of exceedances and provides credible uncertainty bands
for exceedance based diagnostics used in risk assessment.
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Figure 4.6: Return level of Q5 versus return period 7" on a logarithmic axis. The red curve
shows the experimental empirical return levels based on peaks over a threshold. The blue
curve is the ensemble median from the accepted replicas and the gray band is the p5 to
p95 envelope. The experimental line stays within the ensemble band from about 0.1 to
1200 h and follows the median closely, with wider spread only near the record length.

4.1.3.3 Temporal dependence

We test whether the accepted ensemble reproduces the multi hour coherence of the
experiment, not only pointwise statistics. Figure 4.7 contrasts two benchmarks. The
left column uses a basic bootstrap that resamples Q;(t) from the full experimental series
without regard to state. The right column uses the proposed Markov bootstrap that draws
Qs(t) from the empirical bag of the currently visited cluster, so temporal structure can
flow from dwell times and transitions.

In panel (a) the basic bootstrap collapses the ACF to near zero after the first few minutes.
The experimental ACF in red remains positive for hundreds of minutes and decays slowly,
with small oscillations at long lags. The gray band from the basic bootstrap sits tightly
around zero and the blue median is essentially flat, which shows that shuffling values
reproduces the marginal distribution of () but erases persistence and burst clustering.

Panel (b) shows that the Markov bootstrap restores much of the missing memory. The
blue median ACF begins at a positive value, decays gradually, and stays above zero for
many hundreds of minutes. The experimental curve still lies above the ensemble for a
wide range of lags, which indicates an underestimation of very long persistence, yet the
shape and time scale are now comparable.
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Figure 4.7: Temporal dependence diagnostics for the experimental record (red) and the
synthetic ensembles (blue median, gray band 5 to 95%). Top row. Lag autocorrelation
functions. Bottom row. Power spectral densities. Left panels use a basic bootstrap that
resamples ), from the full series. Right panels use the state conditioned Markov bootstrap
that draws @)s from the bag of the visited cluster.

The PSDs in panels (c) and (d) tell the same story in the frequency domain. The basic
bootstrap produces a nearly flat spectrum across the complete frequency range, a signature
of white noise. This places too much energy at fast time scales and far too little at slow time
scales, which explains the near zero ACF. By contrast, the Markov bootstrap generates
a spectrum that bends down with frequency and approaches the experimental slope at
low f. A gap in low frequency power remains, especially below about 10~% Hz, but it is
much smaller than for the basic bootstrap. At the highest frequencies the two spectra are
close, showing that the generator reproduces pulse scale variability while improving the
representation of multi hour modes.

Together the ACF and PSD comparisons show that state conditioning is essential for
realistic temporal structure. A bootstrap that ignores state loses memory almost entirely,
whereas the Markov version carries over the residence times and the transition kernel,
which yields replicas with the correct decay shape, a comparable correlation horizon, and a
spectrum with the right trend. The residual deficit at the very lowest frequencies highlights
where additional structure, such as richer dwell time models or weak nonstationarity,
could further close the gap.
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The accepted ensemble reproduces the experimental mean and variance with small error,
matches return levels across the observed range with credible uncertainty, and recov-
ers the ACF decay and spectral trend from minutes to multi hour scales, although it
underestimates the very slowest modes. These results show that the state conditioned
Markov generator preserves the mechanisms that control typical loads and bursts and
provides a calibrated basis for what follows, including variance decomposition driven
by state switching, sensitivity to cluster granularity, and the construction of image only
surrogates. The small low frequency gap suggests natural extensions through richer dwell
time models or mild nonstationarity, but it does not affect the main conclusions supported
by the ensemble tests.

4.2 Variance Decomposition and the Role of Cluster Granularity

The validated ensemble of time series from Section 4.1 provides a statistically rigorous
setting to investigate the physical role of the morphological states. A central question is
how much of the observed variability in sediment transport can be attributed to the system
switching between states, and how much reflects intrinsic noise within states. Addressing
this quantifies the explanatory power of our Markov model and clarifies how the choice
of cluster granularity (K states) influences predictive accuracy and computational cost.
We begin by measuring the fraction of variance explained for the baseline configuration
(K = 16), and then assess sensitivity using coarser (K = 10) and finer (KX = 34 and
K = 45) partitions.

4.2.1 Fraction of Variance Explained

Separating variability caused by state changes (i.e., movement between morphological
states) from fluctuations that occur within a state helps evaluate the informational value
of the Markov representation. We use a two-layer description of the process and derive
a variance decomposition that isolates these two sources, then evaluate it across the full
ensemble of accepted trajectories.

Let Q¢ be the sediment transport rate at discrete time ¢ and S; € {0,...,K — 1} the
morphological state given by the Markov chain. We write the process as

Qi = ps, + &, et | Sp =85~ D(QUE), 4.1)

where g, is the state-specific mean transport and ¢, represents within-state fluctuations.
By the law of total variance,

Var(Q:) = E[Var(Q | S)] + Var(E[Q: | Si]), (42)
w B
with
K-1 K—-1 K—1
W= Zﬂsag? B = Zﬂs (MS_M9)27 Mg = Z Tsfhs,
s=0 s=0 s=0
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where W represents the average variability that remains within states (the internal noise
around each state-specific mean) and B captures the variability explained by differences
between state means (how much transport levels shift from one state to another). In other
words, W measures within-state fluctuations, while B quantifies the contribution of state
contrasts to the total variance.

The fraction of variance explained by between-state contrasts is

B
= — 0< <1. 4.3
PB = Wi p <pp < (4.3)
Values near one indicate that contrasts between states dominate, while values near zero
indicate that variability is mainly internal to states.

For the 12436 accepted trajectories we proceed as follows. We first count state visits to
obtain 7, and estimate y; and ¢ from the bootstrap samples stratified by state. Using
Egs. (4.2)—(4.3), we then compute W, B, and pp for each trajectory, and store (W, B, pp) to
summarize their ensemble distributions.

For K = 16 clusters, the ensemble average is

pp = 0.151 4+ 0.007 (mean =+ standard deviation),

showing that about 15% of the instantaneous variance in sediment transport is due to the
system switching among states with different means, while the remaining 85% originates
from fluctuations inside states. Figure 4.8 shows a narrow distribution. The 5th-95th
percentile band extends from about 0.134 to 0.167, while the interquartile range lies
between 0.144 and 0.158, with a mean close to 0.151. No replicate falls below pp = 0.122,
indicating that even in the least favorable cases a substantial portion of variance is still
explained by between-state contrasts.

|
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Figure 4.8: Distribution of pp over 12436 trajectories with K = 16 clusters. The dashed
line marks the ensemble mean.
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Taken together, these results indicate that the Markov partition explains a bounded yet
meaningful share of instantaneous variability. For the baseline with K = 16 clusters,
the between—state component accounts for about 15% of the variance (mean pp = 0.151;
IQR 0.144-0.158; 5th-95th percentile 0.134-0.167), with the remaining ~ 85% arising
within states. The tight percentile band across trajectories highlights the robustness of this
estimate. In practical terms, state switching provides predictive signal about transport
levels and bursts, while most short-term variability occurs within states and would require
additional noise models or richer dwell-time structure. We adopt pp as a baseline reference
and next analyze how it changes when the number of clusters is reduced or increased,
balancing explanatory gain against model complexity.

4.2.2 Sensitivity Analysis to Cluster Granularity

The baseline estimate of pp = 0.151 with K = 16 clusters raises a natural question. Does
reducing the number of states remove important contrasts, and does increasing it add
enough information to justify the added complexity? To address this, we rerun the full
Monte Carlo, bootstrap, and Bayesian screening pipeline with the same tolerances and
hyper-parameters for three alternative K: a coarse model with K = 10 clusters, a finer
model with K = 34, and a very fine model with K = 45.

Figure 4.9 compares the resulting distributions of pp, while Table 4.1 and Figure 4.10 track
the ensemble means.

Table 4.1: Ensemble means and 95% confidence intervals of pp for different levels of cluster
granularity.

Number of Clusters (X)) 10 16 34 45

Mean pp 0.127 0.151 0.197 0.210
2.5th Percentile 0.120 0.144 0.189 0.202
97.5th Percentile 0.135 0.158 0.205 0.218
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Figure 4.9: Distributions of the variance-explained fraction pp for K = 10, 16, 34, 45.
Dashed horizontal lines mark ensemble means: 0.127, 0.151, 0.197 and 0.210, respectively.

Key observations.

¢ Coarse model (K = 10). The mean fraction of explained variance is 0.127 & 0.0070,
about 16% below the baseline, so nearly 87% of the variability remains within

clusters.
¢ Baseline (K = 16). Provides a stable balance at 0.151 4 0.0073.

¢ Fine model () = 34). The mean increases to 0.197 &= 0.0080, a gain of about 4-5
percentage points over the baseline, but this requires more than doubling the state
space and reducing data per state, which increases estimation noise for 5 and 2.

¢ Very fine model (K = 45). The mean rises further to 0.210 £ 0.0084. The improve-
ment beyond K = 34 is modest (about 2 percentage points), while data per state
shrink further and parameter estimates become noisier.

The acceptance rate of simulated trajectories mirrors this trend (Fig.4.11): K = 10 accepts
0.28 % of candidates, K = 34 only 0.02 %, and K = 45 falls below 0.01 %. Another point
to note is that each additional percentage point of pg beyond the baseline requires roughly
an order of magnitude more CPU time.
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Figure 4.10: Ensemble mean of the explained-variance fraction pp for K = 10, 16, 34 and
45. The best fit (logarithmic, R? = 0.9763) suggests diminishing returns: increasing the
number of clusters yields progressively smaller gains in explained variance.
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Figure 4.11: Acceptance ratio (accepted / attempted simulations) as a function of the
number of clusters K. The observed decay closely follows an exponential trend, illus-
trating how model complexity drives a rapid drop in acceptance and emphasizing the
computational trade-offs of high-dimensional sampling.
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Taken together, the results indicate a non-linear relationship between cluster granularity
and explanatory power (Fig.4.10). Beyond K = 16, model complexity increases more
rapidly than the gain in explanatory value. The configuration with sixteen clusters
therefore offers a practical balance, capturing about 15% of the total variance while
keeping computational cost and statistical stability within reasonable bounds.

The next section (Section 4.3) builds on this baseline configuration and examines how the
Markov framework can be combined with a simple deterministic component to generate
mean-preserving transport surrogates when only imagery is available.

4.3 Hybrid Semi-Deterministic Model

In many applications the key quantity of interest is the mean sediment transport rate,
since it underpins long-term design and planning. Our experimental setting is unusually
rich because it provides a full @), time series synchronized with imagery, which made
it possible to build a comprehensive Markov+Bootstrap model that captures both mean
and variance. Outside the laboratory, however, continuous transport measurements are
rare. In practice, morphology snapshots (such as satellite images) and a global discharge
estimate are often the only available information.

We first examine a mean-only hybrid in which the accepted Markov state sequences are
retained, but the Bootstrap resampling is replaced by assigning, at each time step, the
cluster mean transport for the active state. Figure 4.12 compares this approach (panel b)
with the original Markov+Bootstrap ensemble (panel a).

Both histograms are centered near the experimental mean ;;, which confirms that the
Markov sequences correctly encode state occupancies. The difference lies in the spread.
The Bootstrap model preserves within-state scatter, while the mean-only hybrid collapses
that variability by construction. This makes the mean-only hybrid suitable when repro-
ducing the long-term mean is the primary goal and only imagery is available. It favors
parsimony over realism in short-term fluctuations.

We then turn to a more constrained scenario in which only water-distribution patterns
(from imagery) and bulk flow are known. Following Bertoldi et al. (2009a), we relate
transport to dimensionless stream power through

G = a(wp), (4.4)

with dimensionless quantities

QS * Qs
D ) Qb = D )
by/gAd3, by/gAd3,

where () is discharge, S reach-averaged slope, b wetted width (image-derived), g gravity,
A = (ps — pw)/pw the submerged specific gravity, dsp median grain size, and (), the
bedload mass flux (converted to volumetric using ps = 2650 kg m~3).

(4.5)

wp =
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Figure 4.12: Comparison of predicted mean sediment transport rates under two ap-
proaches. (a) Mean-only hybrid: Markov state sequences with fixed clusterwise means (no
bootstrap). (b) Full Markov+Bootstrap model. Both are centered near the experimental
mean (dashed red line), but the bootstrap approach exhibits larger variance because it
retains within-state variability.
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Treating each morphological state as one observation, we compute statewise pairs (w;, g;)
from their mean attributes and fit (4.4):

g = 2.54 (wg)2'72. (4.6)

As shown in Figure 4.13, the fit reproduces the transport-power trend but with a steeper
exponent than the n ~ 2.3 reported by Bertoldi et al. (2009a), and with a downward
shift that reflects the lower transport rates observed in the laboratory. This leads to a
Bertoldi-scaled hybrid in which each state is assigned a predicted mean Qs from (4.6)
based on the image-derived wj, and the Markov state sequences are then used to generate
synthetic means.

0,005 A  States mean values A
' --- Original fit: g = 2.54 wj 272
—— Weighted fit: gff =2.63wj 272

0.004 -

0.003 -
*o
o

0.002 -

0.001 -

0.000 - . . . . . .

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

dimensionless stream power W

Figure 4.13: Clusterwise mean values of dimensionless stream power w; and transport
q; (triangles), with least-squares fit (red dashed). The fitted law ¢} = 2.54 (w;)? " follows
the form in Bertoldi et al. (2009a) but with a steeper exponent and overall lower trans-
port—consistent with flume conditions.

If one performs a calibration of the Bertoldi-type law in the standard way, all clusters are
given equal importance in the regression, so that the scale factor a is estimated as

Ps(wp ) gy

2w )

= 2.54.

This approach implicitly balances frequent low-transport states against rare but transport-
intense ones, even though their contribution to the long-term mean is very different.
Because low—wj states are more numerous, they dominate the regression and bias the
predicted mean downward. This effect is apparent in the histogram of synthetic means
obtained from this calibration (Figure 4.14a), which underestimates the experimental
reference. To correct for this, we modified the regression so that each state contributes
in proportion to its temporal relevance, measured by its residence fraction 7, and mean
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dwell time 7;. The weighted estimator of the scale factor is then

% \b *.exp
~ Zs Ws (wb,s) Qb,s
Ay = Top = 2.63, Wg X MgTs,
Zs Ws (wb,s)
with the weights normalized to sum to one. Predicted values are ¢i*™! = @, (w;,)?,

and their weighted mean ;™% = 3" w,q; ’fred closely reproduces the experimental mean

(Figure 4.14b). From a physical perspective, this modification acknowledges that sediment
flux is governed not only by the intensity of transport in each morphology, but also by the
duration of time the system spends in it. Emphasizing states that are both frequent and
persistent restores the balance between common low-transport morphologies and rare
high-transport ones, producing a mean-preserving surrogate from imagery alone.

This hybrid pathway is promising in data-limited contexts. With imagery (to estimate
b and state identity), bulk hydraulics (Q, S), and grain size, it is possible to recover a
mean-preserving transport surrogate. Future refinements could estimate state persistence
directly from morphology or forcing, so that residence weights would not need to rely
on a prior instrumented record. If such persistence predictions become feasible, the
hybrid approach could provide mean-preserving, imagery-based estimates of Q)5 even in
the absence of bedload measurements, while the full Markov+Bootstrap method would
remain the preferred option when short-term variability is important.
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Figure 4.14: (a) Mean transport rates from the Bertoldi-scaled hybrid when all states are
given equal weight. The predicted distribution underestimates the experimental mean
(red dashed line). (b) Results when each state’s predicted mean is weighted by its empirical
residence fraction. The agreement improves markedly, highlighting the importance of
accounting for state persistence.
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4.4 Summary of Key Points

Monte Carlo + bootstrap surrogate recovers realistic transport dynamics Starting from
the Chapter 3 transition matrix P, we simulate state sequences with exponential dwell
times using one trajectory level rate A and map them to transport with state conditioned
bootstrap samples. The synthetic series reproduce the observed range, intermittency, and
burst structure while preserving both inter-state contrasts and intra-state scatter.

Stringent Bayesian screening and an interpretable image only filter From 100000 simu-
lated state paths, 12436 pass absolute tolerances on mean and variance and match labora-
tory moments inside a +2% corridor (mean bias ~ 1.3% % 0.8, variance error ~ 0.9% £ 1.1).
A depth 3 decision tree based only on image derived metrics yields a conservative ac-
ceptance rule (freq_diff < 0.016, dur_Js < 0.88, frobenius_diff < 0.956) with
precision =~ 0.99 and recall ~ 0.29, providing a fast prefilter when @), is unavailable.

Beyond moments the ensemble reproduces extremes and temporal structure The ac-
cepted replicas follow the experimental return level curve across the full record range
(about 6 to 1200 h) and provide credible bands for exceedance based diagnostics. In the
time domain and frequency domain the state conditioned generator recovers the ACF
decay shape and the PSD trend from minutes to multi hour scales and clearly improves
over a basic, state agnostic bootstrap. A small shortfall in very low frequency variance
remains, pointing to gains from richer dwell time models or weak nonstationarity.

Variance decomposition quantifies the information carried by state switching For the
baseline partition K = 16, the fraction of instantaneous variance explained by between
state contrasts is pp = 0.151 4= 0.007 (IQR 0.144 to 0.158, minimum 0.122). State changes
therefore account for a measurable yet bounded share of variability, with the remainder
arising within states.

Granularity improves pp with diminishing returns and higher cost Coarsening to
K = 10 lowers pp to 0.127, while refining to K = 34 and K = 45 raises it to 0.197 and
0.210. Acceptance rates decline steeply as K grows and the mean pp follows a sublinear or
logarithmic trend, making K = 16 a practical balance between interpretability, acceptance,
and computational cost.

Practical hybrids for imagery only scenarios A mean only variant that keeps accepted
Markov state sequences but replaces bootstrap draws with clusterwise means preserves
long term transport means while sacrificing short term variance. A Bertoldi scaled hybrid
links statewise transport to dimensionless stream power,

g5 = 2.54 (wp)*™,

steeper than the ~ 2.3 reported by Bertoldi et al., enabling mean preserving surrogates
from imagery and bulk flow alone.
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Chapter 4 supports a view of braided rivers as multi state systems. Discrete morphological
state sequences combined with state conditioned transport statistics generate statistically
faithful surrogates, explain a quantifiable share of variance, and enable deployable mean
preserving models when only images are available. The remaining low frequency mis-
match is targeted and motivates semi Markov extensions focused on state specific dwell
times, while the screening and decision tree provide an operational path for fast, image
driven preselection and scenario testing.
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5.1 Conclusions

This thesis builds a practical bridge from plan view imagery to probabilistic forecasts
of braided river morphology and sediment transport. The central idea is to represent
planform evolution as a sequence of discrete states and to model their alternation with a
continuous time Markov chain. A lean Monte Carlo and bootstrap layer then converts
state dynamics into transport surrogates that pass objective resemblance tests. The result
is a workflow that sits between descriptive metrics and physics heavy models and shows
that planform carries actionable predictive signal once cast as a multi state process.

Chapter 3 established a robust image to state mapping. Complementary distances based on
MHD and Dice, followed by dimensionality reduction and density clustering, produced
an interpretable morpho space with a finite catalog of recurrent states that spans the
continuum from single thread to bar rich configurations. Medoids and morphometric
profiles clarified that mean transport is highest in simple confined states and lowest in wide
partitioned states. Across clusters the mean of @, is strongly and negatively associated
with wetted width and with extended braiding index. Dwell times are well approximated
by exponentials, which yields state specific exit rates A and a transition matrix P that
together define a CTMC consistent with the observed persistence and activity.

Chapter 4 turned that structure into a working surrogate. We simulated 100,000 state
paths under P using one trajectory level rate A and screened each path using moments
implied by state means and variances. About 0.12% of the paths passed tight absolute
tolerances on mean and variance, which produced 12,436 accepted sequences. State
conditioned bootstrap on this set generated transport series that reproduce range, inter-
mittency, and burst structure while preserving inter state contrasts and intra state scatter.
An image only decision tree provided a conservative prefilter with simple thresholds
on state frequency mismatch, duration distribution, and Frobenius distance between
transition structures. Operational cutoffs around freq_diff < 0.016, dur_Js < 0.88,
and frobenius_diff < 0.956 achieved high precision and moderate recall, which is an
acceptable trade off for safe preselection when (@); is unavailable.
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The accepted ensemble passed tests beyond the first two moments. It tracked the ex-
perimental return level curve across the full record window from about 6 to 1200 h and
provided credible bands for exceedance based diagnostics used in risk assessment. In the
time and frequency domains the state conditioned generator recovered the ACF decay
shape and the PSD trend from minutes to multi hour scales and clearly improved over a
basic state agnostic bootstrap. A small shortfall remained at very low frequencies, which
points to where additional structure could further reduce the gap without altering the
core workflow.

Two results clarify what information the state sequence carries. First, transport is mea-
surably state conditioned. Pulses concentrate in morphologically simple phases and
lulls follow transitions into storage prone braids, in line with the negative relations be-
tween mean () and both wetted width and extended braiding index. Second, variance
decomposition showed that state switching explains a bounded yet meaningful share of in-
stantaneous variability. For K = 16 the between state fraction was pp ~ 0.15 with narrow
dispersion. Finer granularity raised pp with diminishing returns and steep computational
costs because acceptance rates fell sharply.

The framework is ready for use in imagery only settings. A mean only hybrid that
replaces bootstrap draws with cluster means preserves long term averages. A Bertoldi
scaled option links statewise transport to dimensionless stream power and yields mean
preserving surrogates from imagery and bulk hydraulics. Together with the full Markov
and bootstrap pipeline these tools allow scenario testing and operations with transparent
assumptions and traceable uncertainty.

In sum braided rivers can be usefully treated as multi state systems. A calibrated state
space, a CTMC generator, and a lean Monte Carlo and bootstrap layer produce transport
surrogates that are statistically faithful, transferable across realizations, and suitable for
analysis and decision support at experiment time scales. The remaining low frequency
mismatch is limited and well identified and it does not detract from the core result that
imagery driven state dynamics already encode the levels, variability, intermittency, and
extremes seen in the laboratory record.

5.2 Future work

We can think of many possibilities for future work. Below we outline some of them.

1. Estimating the dwell rate \ from imagery only Link the trajectory level rate to
image derived covariates so that A can be inferred without transport data. Start with
parsimonious regressions that map wetted width, eBI, junction density, curvature
proxies, active width to log . Use generalized additive models, monotone splines,
or hierarchical pooling across runs to stabilize estimates when some states are rare.
A survival framing can model the hazard of leaving a state as h;(t | x) = \i(x)
with x computed from masks only. Compare Cox style log linear effects, tree based
survival, and shallow contrastive embeddings that predict A from low dimensional
image representations. Validate with cross run transfer, posterior predictive checks
for dwell histograms, and sensitivity to image resolution.
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2. Forecasting when a configuration is out of distribution Develop novelty detection
and open set forecasting for planforms that do not match any learned state, for
example after an engineered intervention. Use distance to centroids in the embed-
ding, predictive entropy of the state classifier, and one class methods to flag novelty.
Define an explicit unknown macro state with its own dwell prior and a transition
stencil learned from the nearest valid states. For forecasting, propagate uncertainty
with a mixture over the three closest macro states or with a physics guided bridge
that nudges toward feasible neighbors while honoring engineered constraints. Allow
online adaptation that spins up a new state if novelty persists and reaches support
above a minimum occupancy.

3. Synthetic morphology generators to feed the model Build generators of plan
view morphology and state sequences when observations are sparse. Cellular
automata, neural cellular automata, and lattice gas models can reproduce channel
splitting and bar dynamics under simple rules. Multiple point statistics and pattern
based geostatistics can sample realistic planforms from training images. Diffusion
models, adversarial generators, and autoregressive video models can be adapted
with geomorphic constraints and conservation penalties so that generated masks
respect area, width, connectivity, and mass balance. Use these generators to stress
test the CTMC and to augment rare states.

4. Three state coarse model and direct three class mapping from images Explore a
coarse representation with three macro states that reflect the clear grouping observed
in the data. A hierarchical route merges the 16 states into 3 via community detection
on the transition graph or by thresholding wetted width and eBI, then trains a
supervised classifier to map images directly to the classes using engineered features
or a shallow CNN. Impose temporal consistency with a three state hidden Markov
model or a duration prior. Fit a three state CTMC and compare dynamic fidelity,
extremes, and mean preservation against the 16 state baseline, including acceptance
rates and computational cost.

5. Effect of lateral confinement on state complexity Vary corridor width and bank
fixing to map how the number of states, their occupancies, and the transition rates
respond to confinement. Build a phase diagram with axes defined by dimensionless
stream power and a confinement index. Quantify thresholds where the system
collapses to a small set of simple states and where it expands into bar rich repertoires.
Use this diagram to anticipate how engineering works may alter the reachable state
space.

6. What triggers a transition between states Attribute transitions to measurable pre-
cursors. Combine change point detection with covariates such as discharge, slope
adjusted power, curvature, junction density, and bar migration. Train transition
classifiers and use permutation importance or SHAP style attributions to identify
proximal causes. Test for asymmetric gateways and for lagged signatures that
foreshadow switches.
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7.

10.

11.

12.

13.

14.

Explaining the remaining variance Decompose within state variability with hierar-
chical models. Represent transport inside each state with a stochastic component
that carries short memory fluctuations and micro adjustments at scales below state
resolution. Compare Markov plus within state noise against semi Markov alter-
natives to capture longer dwell variability and part of the missing low frequency
energy. Report gains in ACF and PSD at long lags and in coverage of extreme bursts.

Vegetation as a state modifier Add vegetation cover and type as covariates that
alter dwell times and jump probabilities. Build vegetation aware states or state
annotations and test whether rooted patches lengthen persistence, redirect transi-
tions toward storage prone configurations, and reduce burst frequency. Evaluate
robustness across growth seasons and disturbance cycles.

Role of floods Quantify how floods move the system in state space. Condition
kernels on hydrographs and track which states are visited during rising and falling
limbs. Test whether the generator is time invariant or whether flood events cause
a regime shift. Measure hysteresis in return paths and the residence penalties
associated with large disturbances.

Semi Markov and non exponential sojourns Replace exponential dwell times
with flexible families such as phase type, lognormal, or spline based hazards. Fit
hidden semi Markov models where latent sub states explain long residence tails and
conditioning on the next state is allowed. Implement duration aware simulation and
compare ACF integrals and low frequency spectral energy against the exponential
baseline.

Markov chains with exogenous inputs Let the generator depend on covariates
like discharge, temperature, or sediment supply. A continuous time model with
log ¢;(t) = auj + ,C-}Z-zj(t) can capture non stationarity directly. Use group sparsity
to select which transitions respond to which inputs. Compare covariate driven
kernels against piecewise stationary baselines and report gains in predictive skill
and calibration.

State definitions via representation learning Learn embeddings from images with
self supervised contrastive learning to improve cluster stability and transfer to new
rivers. Compare learned states against expert defined planform classes and quantify
which representation yields better transport surrogates. Use domain adaptation to
port the embedding across sites with different scales and grain sizes.

Graph based states and connectivity Define states using metrics of the channel
network graph such as node degree, path redundancy, and loop density. Test
whether graph derived states better explain transport intermittency than purely
areal or contour based clustering. Combine graph features with areal descriptors in
a multi view clustering that preserves both topology and coverage.

Coupling to physics based models Use states to guide or emulate hydro morpho-
dynamic solvers. Constrain bedload closures with state dependent parameters or
build surrogates that map model outputs into state sequences. Inverse uses include
calibrating friction or transport exponents by matching CTMC statistics. Design
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15.

16.

twin experiments where physics based runs are nudged toward the observed state
occupancies and transition corridors.

Optimal sampling design Determine the minimum image cadence and duration
needed to recover the generator within a tolerance. Use information measures
and synthetic experiments to set monitoring guidelines for cameras and satellites.
Quantify identifiability of P and dwell rates as functions of cadence, duration, and
signal to noise in segmentation.

Experimental interventions Use the state framework to assess effects of controlled
changes such as local bank reinforcement, graded sediment pulses, or wood ad-
ditions. Track how interventions shift dwell times and transition corridors and
whether they create new states or push the system toward the boundary of the
learned morpho space.
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Appendix A — Image Preparation
Code

The following Python script was developed to preprocess experimental images. It per-
forms rotation, masking, cropping, and HSV-based filtering for further analysis.

Python Code

I [Image Preparation Script]

2 \#

3 \# LESO - Image preparation for the MPS process
4 \#

6 \#

7 \# Part 1: Cropping Images

8 \ #

9 \# Images are cropped using a mask to isolate the channel and
10 \# remove the background. The image is rotated to align the
11 \# channel, cropped to keep it centered, and masked.

14 import os
15 from PIL import Image, ImageChops

17 \# Define input/output folders and mask path

18 folder_path = r"C:\\FakePath\\Experiment\\RawImages"

19 output_folder_path = r"C:\\FakePath\\Experiment\\Cropped"
20 mask_path = r"C:\\FakePath\\Experiment\\Mask"

21

2 \# Create output folder if it does not exist

23 if not os.path.exists (output_folder_path):

24 os.makedirs (output_folder_path)

25

2 \# Load mask
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27 mask_filename = "mask.png"

28 mask_path = os.path. join (mask_path, mask_filename)

29 mask = Image.open (mask_path) .convert ("L")

30 mask = mask.rotate (3.6, expand=True, fillcolor="black")

8l

32 \# List all JPG files

33 jpg_files = [f for f in os.listdir (folder_path) if f.endswith
(".Jjpg") ]

34

()
a1

\# Process each image

36 for jpg_file in jpg_files:

37 input_image_path = os.path.join(folder_path, jpg_file)

38 input_image = Image.open (input_image_path)

39

40 \# Rotate images

41 input_image = input_image.rotate (-90, expand=True, fillcolor=
"black")

4 rotated_image = input_image.rotate (3.6, expand=True,

fillcolor="black")

44 \# Apply mask

45 result_image = ImageChops.multiply (

46 rotated_image.convert ("RGB"), mask.convert ("RGB")

47 )

48

49 \# Crop bounding box

50 bbox = result_image.getbbox ()

51 result_image = result_image.crop (bbox)

52

53 \# Save

54 output_image_path = os.path. join (output_folder_path, "
cropped_" + Jpg_file)

55 result_image.save (output_image_path)

56

57 \# Close resources

58 input_image.close ()

59 rotated_image.close ()

60 result_image.close ()

62 print ("Image cropping completed.")

63

64 \#

65 \# Part 2: Binary Image Creation - Color Thresholding

66 \#

67 \# HSV filtering using blue ink as an indicator of the water
68 \# surface. MATLAB provides threshold values with its

69 \# Image Thresholding Toolbox.

70 \#
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79

80

81

82

88

89

90

91

92

93

94

96

import cv2
import numpy as np

\# Convert MATLAB-style normalized value into OpenCV scale
def convert_to_opencv_range (matlab_value, opencv_max) :
return int (matlab_value * opencv_max)

\# Process image to mask

def process_image (image_path) :

img = cv2.imread(image_path)

hsv_img = cv2.cvtColor (img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange (hsv_img, lower_hsv, upper_hsv)
return mask

\# Example thresholds (values tuned experimentally)
channellMin, channellMax = 0.401, 0.662
0.180, 1.000
0.049, 1.000

channel2Min, channel2Max

channel3Min, channel3Max

\# Convert MATLAB ranges to OpenCV ranges

channellMin_opencv = convert_to_opencv_range (channellMin,
179)

channellMax_opencv = convert_to_opencv_range (channellMax,
179)

channel2Min_opencv = convert_to_opencv_range (channel2Min,
255)

channel2Max_opencv = convert_to_opencv_range (channel2Max,
255)

channel3Min_opencv = convert_to_opencv_range (channel3Min,
255)

channel3Max_opencv = convert_to_opencv_range (channel3Max,
255)

\# HSV filter bounds

lower_hsv = np.array([channellMin_opencv, channel2Min_opencv,
channel3Min_opencv])

upper_hsv = np.array ([channellMax_opencv, channel2Max_opencv,
channel3Max_opencv])

\# Input/output

folder_path = r"C:\\FakePath\\Experiment\\Cropped"
output_folder = r"C:\\FakePath\\Experiment\\Masked"
os.makedirs (output_folder, exist_ok=True)

\# Process folder

for filename in os.listdir (folder_path):

if filename.endswith(".jpg"):

input_path = os.path.join(folder_path, filename)

output_path = os.path.join (output_folder, "masked_ " +
filename)
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119

120

121

122

129

1889

mask = process_image (input_path)
cv2.imwrite (output_path, mask)

print ("Masking completed.")

\# Part 3: Resize, remove blobs, invert, and edge detection

\#

def resize_remove_small_blobs_invert_and_edge_image (
input_path, output_path, target_size, size_threshold):

\# Read grayscale

img = cv2.imread (input_path, cv2.IMREAD_GRAYSCALE)

height, width = img.shape[:2]

aspect_ratio = width / height

\# Maintain aspect ratio
if aspect_ratio > 1:
new_width = target_size

new_height = int (target_size / aspect_ratio)

else:

new_width = int (target_size x aspect_ratio)

new_height = target_size

resized_img = cv2.resize(img, (new_width, new_height),

interpolation=cv2.INTER_NEAREST)

\# Connected components

num_labels, labels_im, stats, _ = cv2.
connectedComponentsWithStats (resized_img)

output_img = np.zeros_like (resized_imgqg)

\# Keep blobs above threshold

for i in range(l, num_labels):

if stats[i, cv2.CC_STAT_AREA] >= size_threshold:
output_img[labels_im == i] = 255

\# Invert image
inverted_img = 255 - output_img

\# Save result
cv2.imwrite (output_path, inverted_img)

\# Process folder

input_folder = r"C:\\FakePath\\Experiment\\Masked"
output_folder = r"C:\\FakePath\\Experiment\\Processed"
os.makedirs (output_folder, exist_ok=True)

target_size = 200
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159 filterSize = 30
160

161 for filename in os.listdir (input_folder) :

162 if filename.endswith(".jpg") :
163 input_path = os.path.join (input_folder, filename)
164 output_path = os.path.join (output_folder, "resized_ " +

filename[:-4] + ".png")

165 resize_remove_small_blobs_invert_and_edge_image (input_path,
output_path, target_size, filterSize)

166

167 print ("Resizing and blob filtering completed.")
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Appendix B — Parallelized MHD
Code

This appendix presents the Python implementation used to compute the Modified Haus-
dorff Distance (MHD) between sets of points extracted from binary images. The code
is designed to handle large datasets by processing the distance matrix in blocks, which
are stored separately to reduce memory usage. The implementation leverages GPU
acceleration through PyTorch to parallelize the calculations and significantly improve
performance.

Python Code

1 [Hausdorff Distance Calculation Script]
import os

N

3 import time

4 from PIL import Image
5 import numpy as np

6 import torch

8 def load_images_to_points (directory) :

mmwn

10 Load all PNG/JPG images in a directory and extract points
from white pixels.

11 Each image is converted to grayscale, thresholded, and points

are extracted.

mmn

13 image_files = [f for f in os.listdir(directory) if f.endswith
(" .png’) or f.endswith(’.Jjpg’) ]
14 sets_of_points = []

16 for image_file in image_files:

17 image_path = os.path.join(directory, image_file)

18 image = Image.open (image_path) .convert ('L’) # Convert to
grayscale

19 image_np = np.array (image)

21 # Get coordinates of white pixels (threshold = 128)
2 points = np.column_stack (np.where (image_np > 128))
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24 # Subsample: take only one of every two points
25 points = points[::2]

26

27 sets_of_points.append(points)

28

29 print ("Points successfully extracted.")

30 return sets_of_points

31

33 def calculate_mhd_batch (tensorl, tensor2):

34 e

35 Compute the Modified Hausdorff Distance (MHD) between two

tensors of points.

2 nun

37 def tensor_to_points (tensor):

38 return torch.nonzero (tensor.squeeze() > 0.1, as_tuple=False).
float ()

39

40 A = tensor_to_points(tensorl) .cuda ()

41 B = tensor_to_points (tensor2) .cuda ()

42

43 if A.size(l) != B.size(l):

44 raise ValueError ("Both point sets must have the same
dimensionality.")

45

46 dist_matrix = torch.cdist (A.unsqueeze (0), B.unsqueeze (0)).
squeeze (0)

47 fhd = torch.mean (torch.min(dist_matrix, dim=1)[0]) # forward
distance

48 rhd = torch.mean (torch.min (dist_matrix, dim=0) [0]) # reverse
distance

49 mhd = torch.max (fhd, rhd)

50

51 return mhd.item/()

52

53

54 def compute_and_save_distance_matrix_block (sets_of_points,

block_start, block_size, save_dir, device):

wnw

56 Compute a block of the distance matrix between sets of points
57 Saves the block as a NumPy file in the specified directory.

58 mnon

59 n = len(sets_of_points)

60 end = min(block_start + block_size, n)
61 block_height = end - block_start

63 tensors = [torch.tensor (points, dtype=torch.float32) .to(
device) for points in sets_of_points]

64
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65 distance_matrix_block = np.full ((block_height, n), np.nan)

66

67 for i in range (block_height):

68 tensorl = tensors[block_start + 1i]

69 distances = []

70 for j in range(block_start + i, n):

71 tensor2 = tensors|j]

72 mhd = calculate_mhd_batch (tensorl, tensor2)

73 distances.append (mhd)

74 distance_matrix_block[i, block_start + i:] = distances

75

76 os.makedirs (save_dir, exist_ok=True)

77 block_filename = os.path.join(save_dir, f"distance_block_{
block_start}.npy")

78 np.save (block_filename, distance_matrix_block)

79

80 print (f"Block {block_start} saved.")

81

82

83 def compute_distance_matrix_in_blocks (directory, block_size,

save_dir, device):

mmon

85 Compute the full distance matrix in blocks, saving each block
as a NumPy file.

87 sets_of_points = load_images_to_points (directory)

88 n = len(sets_of_points)

89

90 for block_start in range (0, n, block_size):

91 compute_and_save_distance_matrix_block (

92 sets_of_points, block_start, block_size, save_dir, device
93 )

94 print (f"Block starting at {block_start} processed.")

95

96

97 if  name_ == "_ main__ ":

98 # Example usage with fake paths for LaTeX

99 input_directory = r"C:\\FakePath\\Experiment\\BinaryMasks"

100 output_directory = r"C:\\FakePath\\Experiment\\
HausdorffResults"

101 block_size = 10

102 device = torch.device("cuda" if torch.cuda.is_available()
else "cpu")

104 start_time = time.time ()

105 compute_distance_matrix_in_blocks (input_directory, block_size
, output_directory, device)

106 end_time = time.time ()

107

108 print (f"Total execution time: {end_time - start_time:.2f}
seconds")
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Appendix C — Dwell-Time
Histograms

This appendix presents the complete set of dwell-time histograms for all 16 clusters.
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Dwell-Time Histograms
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Dwell-Time Histograms
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Appendix D - Top 64 bidirectional
transitions with group labels

Top 64 bidirectional transitions with group labels

Rank A  Groupcolor B Groupcolor A—B B—A Total

1 10 green 11 green 132 134 266
2 7 green 12 green 105 9% 201
3 10 green 12 green 63 72 135
4 7 green 10 green 55 63 118
5 12 green 14 blue 55 53 108
6 5 blue 11 green 37 37 74
7 9 blue 13 blue 29 29 58
8 3 blue 11 green 27 29 56
9 14 blue 15 blue 23 19 42
10 6 blue 13  blue 16 20 36
11 6 blue 7 green 16 15 31
12 5 blue 9 blue 14 14 28
13 11 green 15 blue 12 14 26
14 2 red 3 blue 12 12 24
15 13 blue 15 blue 11 13 24
16 4 red 10 green 12 11 23
17 8 red 12 green 10 12 22
18 8 red 13 blue 10 12 22
19 9 blue 14 blue 9 11 20
20 4 red 7 green 9 10 19
21 6 Dblue 9 blue 8 11 19
22 2 red 4 red 9 9 18
23 3 blue 10 green 7 11 18
24 9 Dblue 15 blue 8 10 18
25 7 green 13 blue 7 11 18
26 6 Dblue 15 blue 8 9 17
27 4 red 8 red 8 9 17
28 5 Dblue 13  blue 8 8 16

Continued on next page
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Table 1 - continued from previous page

Rank

Group color

B

Group color A—B B—A Total

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

»-PO)U‘IU'IU)NNH>H>\1©©O\O\U)N\]Q.)OOI\J»P»-P\]OONI\)OOQJO\QJ»POOI\JNU‘IOJ>

blue
blue
red
red
red
red
blue
blue
blue
red
red
red
red
green
red
red
red
red
blue
green
red
blue
blue
blue
blue
blue
green
red
red
red
red
blue
blue
blue
blue
red

7
15

5

7
14
11

9
12
12
11

6

9
10
14

6

9
10
15
14
15
11
15
14
11
11
12
11
13
15
12
15
13
14
12

5
12

green 7 8 15
blue 7 7 14
blue 7 7 14
green 6 8 14
blue 6 8 14
green 6 8 14
blue 6 8 14
green 6 7 13
green 6 7 13
green 6 7 13
blue 6 7 13
blue 6 7 13
green 5 7 12
blue 5 7 12
blue 5 7 12
blue 5 7 12
green 5 7 12
blue 5 6 11
blue 5 6 11
blue 5 6 11
green 5 6 11
blue 5 6 11
blue 5 5 10
green 5 5 10
green 5 5 10
green 5 5 10
green 5 5 10
blue 5 5 10
blue 5 5 10
green 5 5 10
blue 5 5 10
blue 5 5 10
blue 5 5 10
green 5 5 10
blue 5 5 10
green 5 5 10
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Appendix D — Weighted calibration
of the Bertoldi-type law

The calibration of the Bertoldi-type law in the hybrid model requires special care when
the goal is to reproduce long-term mean transport. The relationship is written as

g = a(wp)’,

where b is fixed by the regression slope in log-log space and a is a scale parameter. If a is
estimated by ordinary least squares with equal weights, the regression takes the form
2o (whe) gy’

a= ,

> (wp )

where the sum runs over states s. This approach gives each state the same importance
regardless of its persistence. Since low—w; states are more numerous, they dominate the
fit, and the synthetic means obtained from this calibration underestimate the experimental
reference.

The relevant quantity is the long-term time average. If S(¢) denotes the state at time ¢ and
q*(S(t)) its associated transport, then over a large horizon T’

T
pr(@ = [ @ S@adt + Fmai )

where 7, is the empirical fraction of time spent in state s. In a Markovian setting with
finite dwell times, not only the fraction of time but also the mean residence time 7, matters
for the variance of the sample mean over finite 7". The variance of the block average can
be approximated as

C *,eX * 2
Var[ur(a)] =~ T ZWSTS (qb:S P—a (wb,s)b> ;

with C a constant independent of s and a. This expression shows that the contribution of
each state to the error of the time average grows both with its time fraction 75 and with its
persistence 7. Long and frequent episodes have more influence on finite-time averages
than rare or short-lived ones.

135



Weighted calibration of the Bertoldi-type law Appendix E

Minimizing this variance with respect to a is equivalent to solving the weighted least
squares problem

2
. * b
min Y w, (657 - a@i)') . wocmn,
s
The solution is b _k,exp
a . Zs Ws (WZ,S) qb S
Y Zs Ws (wb,s)Zb

*,pred __ ~

Predicted values then follow as ¢, = @ (ngs)b. The surrogate mean under the same

measure is
red __ *,pred ex _ *,eXP
b g Wsqy’s s b= E Ws g’ -

The difference between the two is the weighted average of regression residuals,
Mg}red exp _ Z W (qb ,;)red q:y,;xp) )

By Cauchy-Schwarz inequality, this difference is bounded by the weighted root mean
square error,

pred exp
My — Ky

2
< JZ (qbf”d qZ,’E"p) = RMSE,.
S

Therefore, a good weighted fit (small RMSE,,) necessarily implies that the mean under w
is close to the experimental mean under the same measure. Importantly, this guarantee
does not require prescribing the experimental mean in advance, but emerges naturally
from the choice of weights.

From a physical perspective, this procedure is justified because sediment transport de-
pends not only on the instantaneous flux associated with a morphology but also on how
long the system remains in that morphology. Frequent, long-lived low-transport states
should influence the mean more strongly than rare, short-lived high-transport states. By
using weights proportional to 7,75, the calibration emphasizes exactly those states that
dominate the time dynamics, producing a surrogate law that is consistent with the physi-
cal process. This adjustment of the factor a thus transforms the Bertoldi relationship into a
mean-preserving predictor without requiring prior knowledge of the global experimental
mean, while retaining the form and exponent of the original law.
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